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PREFACE

Great advances in the theory of turbulent motion have been made
in the years since the war, and although much remains to be done
it seems an opportune time to put some of the existing work into
more permanent form. There are many excellent reviews in the
periodical literature, but they are necessarily limited in size and
have usually been concerned with recent advances. It has been
my experience that students and others coming fresh to the
subject have found a need for a systematic and complete account
of the established knowledge of turbulence, and I hope that this
book will fill part of that need. There is perhaps another reason
why the present time is suitable for the appearance of a bock on
homogeneous turbulence. It seems that the surge of progress
which began immediately after the war has now largely spent itself,
and there are signs of a temporary dearth of new ideas. Work on
turbulence in flows with a mean rate of shear is proceeding apace,
but in the more refined analysis of homogeneous turbulence we
have got down to the bedrock difficulty of solving non-linear
partial differential equations. Many properties of homogencous
turbulence can be deduced without a quantitative treatment of the
non-linear aspects of the Navier-Stokes equation, but it is probable
that not many of significance remain to be found in this way. Such
a treatment will not be developed overnight.

I have tried to make the following account of homogeneous
turbulence as complete as possible, with one qualification, men-
tioned below, and I hope no significant work has been overlooked.
In the selection of experimental data and in the assessment of
theoretical contributions it will be found that I have leaned heavily
on the research cdarried out at Cambridge, If in places there seems
to be a bias unsupported by objective arguments, I can only
apologize and promise to consider all suggestions for improvement.

The exception to completeness is in the exclusion of all work
requiring a Lagrangian, or motion-of-a-particle, description of the
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flow. Thus no mention of the important problem of turbulent
diffusion will be found. The methods used to handle Eulerian and
Lagrangian descriptions of the motion are very different and they
proceed independently, so that problems like diffusion would not
fit naturally into the present work, Moreover, there 1s a consider-
able amount of research now in progress on problems of particle
motion and we may know a good deal more in a few years’ time,

Finally, it may be worth while to say a word about the attitude
that I have adopted to the problem of turbulent motion, since
workers in the field range over the whole spectrum from the purest
of pure mathematicians to the most cautious of experimenters, It
is my belief that applied mathematics, or theoretical physics, is
a science in its own right, and is neither a watered-down version
of pure mathematics nor a prim form of physics. The problem of
turbulence falls within the province of this subject, since it is
capable of being formulated precisely. The manner of presentation
of the material in this book has been chosen, not with an eye to the
needs of mathematicians or physicists or any other class of people,
but according to what is best suited, in my opinion, to the task
of understanding the phemomenon. Where mathematical analysis
contributes to that end, [ have used it as fully as I have been able,
and equally I have not hesitated to talk in descriptive physical
terms where mathematics seems to hinder the understanding.
Such a plan will not suit everybody's taste, but it is consistent with
my view of the nature of the subject-matter,

A first draft of this work was one of the essays to which the
Adams Prize for 1949-50 in the University of Cambridge was
awarded.

It is a pleasure to be able to record here my gratitude to Sir
Geoffrey Taylor, Dr A. A. Townsend and Professor W, Heisenberg,
who have contributed much to my understanding of turbulence;
the many conversations I have had with them are among my
happiest experiences. I am grateful also te Mr T. H. Ellison,
Dr 1. Proudman and Dr R, W. Stewart, who were students of
turbulence at Cambridge during the period of preparation of the
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book, for the help they gave in many different wavs; to Professor
M. S. Bartlett, Dr M. Mitchner and Mr J. E. Moval for giving me
their comments on parts of the manuscript; and to my wife for
many hours spent in typing.

Acknowledgement is made to the following bodies for permission
to reproduce figures from their publications: the Royal Society
(figs. 5.1, 5.2, 6.3, 7.1-7.9, 8.5), the Cambridge Philosophical
Society (figs. 6.3, 7.10, 7.11, 8.3, B8.6), Quarterly Yournal of
Mechamcs and Applied Mathematics (figs. 4.1, 4.2, 5.3), and the

Institute of Aeronautical Sciences (fig. 6.2).
G.K.B.

CAMBRIDGE
July 1952






INTRODUCTION

1.1. The study of homogeneous turbulence

The problem to be studied herein can be stated very briefly,
provided we do not worry about details for the moment. We
imagine an infinite uniform body of fluid which can be charac-
terized in the usual way by a density p and molecular transport
coefficients such as the viscosity x. This body of fluid can be set into
different kinds of motion, many of which are described in the text-
books on hydrodynamics. Itisa well-known fact that under suitable
conditions, which normally amount to a requirement that the
kinematic viscosity ¥ be sufficiently small, some of these motions
are such that the velocity at any given time and position in the fluid
is not found to be the same when it is measured several times under
seemingly identical conditions. In these motions the velocity takes
random values which are not determined by the ostensible, or
controllable, or * macroscopic’, data of the flow, although we believe
that the average properties of the motion are determined uniquely
by the data. Fluctuating motions of this kind are said to be turbu-
lent. Our concern is with homogeneous turbulence, which is
a random motion whose average properties are independent of
position in the fluid. The problem is to understand the mechanics,
and to determine analytically the average properties, of this kind
of motion.

The conception of homogeneous turbulence is idealized, in that
there is no known method of realizing such a motion exactly. The
various methods of producing turbulent motion in a laboratory or
in nature all involve discrimination between different parts of the
fluid, so that the average properties of the motion depend on
position. However, in certain circumstances this departure from
exact independence of position can be made very small, and it is
possible to get a close approximation to homogeneous turbulence.
It has been found, for instance, that if a unifort stream of fluid
passes through a regular array of holes in a rigid sheet, or a regular
grid of bars, held at right angles to the stream, the motion down-
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stream of the sheet consists of the same uniform velocity together
with a superimposed random distribution of velocity. This random
motion dies away with distance from the grid, and to that extent is
not statistically homogeneous, but the rate of decay is found to be
so small that the assumption of homogeneity of the turbulence is
valid for most purposes. Thus there is available a convenient
laboratory method of producing turbulence which is approximately
homogeneous, the various stages of decay occurring at different
distances from the grid, and to this fact, primarily, must be attri-
buted the very considerable advances in the subject in recent years.
The possibility of carrying out controlled and accurate experiments
rapidly has permitted a very fruitful combination of experimental
and theoretical research.

The kinds of turbulent motion which are encountered in nature
or in the fields of aeronautics, hydraulics and chemical engineering
are usually more complicated than homogeneous turbulence. These
turbulent motions usually are such that, in the first place, there is
a variation of the mean velocity with position (which normally
arises from the presence of rigid boundaries) and, in the second
place, there is a variation of the average properties of the turbulent,
or fluctuating, velocity with position. As a consequence of these two
properties there will occur some kind of interaction between the
fluctuating and mean components of the motion—or, stated in
another way, the presence of rigid boundaries imposes a steady
boundary condition on the random velocity field—which is difficult
to handle mathematically, and there will also be transport effects
produced by the different intensity of the fluctuating motion at
different points. These are complicated mechanical effects and we
have not yet obtained a proper understanding of them. As a pre-
liminary, it seems appropriate to consider homogeneous turbulence
which has neither of the two properties mentioned above. Despite
the lack of a wide field of immediate application of the results
concerning homogeneous turbulence, the study of homogeneous
turbulence has practical utility, in that if we understand this simpler
case we also understand some at least of the aspects of non-homo-
geneous turbulence.

It will be clear that if we wish to go further in the direction of
simplifying the problem in order to make it more tractable, we can
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make assumptions about the directional symmetry of the average
properties of the turbulent motion. In the simplest possible case
the turbulence is statistically homogeneous and isotropic, and so
depends on neither the position nor the direction of the axes of
reference, The possibility of this further assumption of isotropy
exists only when the turbulence is already homogeneous, for certain
directions would be preferred by a lack of homogeneity. It has been
found that, in addition to being the simplest possible case of
turbulent motion, isotropic turbulence is readily generated in the
laboratory. Whatever the initial directional properties of a field of
homogeneous turbulence, it appears to settle down to an approxi-
mately isotropic state, and the usual laboratory method of generating
homogeneous turbulence by passing a uniform stream through
a regular array of bars produces, in fact, turbulence which is very
nearly isotropic. Consequently, most of the available data concerns
isotropic turbulence. Equally, most of the theoretical work has been
built on this foundation, so that the greater part of this book will
be devoted to the special case of isotropic turbulence. However, it
will sometimes be found possible to retain greater generality, and
there are some definite and important results for non-isotropic
homogeneous turbulence.

Finally, if we are to list the reasons for studving homogeneous
turbulence, we should add that it is a profoundly interesting physical
phenomenon which still defies satisfactory mathematical analysis;
this is, of course, the most compelling reason.

1.2. Mathematical formulation of the problem
Let us consider first the equations which determine the variation
of the turbulent velocity with respect to position and time.

One governing equation is provided by the so-called continuity
equation expressing the conservation of mass of the fluid. In the
general case it is necessary to allow for variations in the density of
the fluid in space and time consequent upon variations in the
pressure. A measure of the importance of these density variations
is provided by the ratio of a typical fluid velocity (say, in our case,
the root-mean-square) to the average velocity of sound in the fluid;;

t See, for instance, Chap. t of Modern Developments in Fluid Dynamics,
vol. 1 (High-Speed Flow), Oxford University Press, 1953.
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when this ratio is small compared with unity the density variations
are negligible and the fluid behaves as though it were incompres-
sible. It is possible that in certain astrophysical situations the
turbulent velocities are comparable with the velocity of sound.
However, in the cases of turbulent motion set up in the laboratory
or observed in the atmosphere, oceans or rivers, it is almost certain
that this ratio will be very small compared with unity for the reason
that the amount of kinetic energy involved would otherwise be
prohibitively large.

Consequently we shall confine attention to the case of a fluid
which is effectively incompressible (indeed, it would be difficult to
proceed on any other basis on account of the complexity of the
problem), The equation of continuity is then

V.u=0p, (1.2.1)

where u 1s the vector velocity of the turbulent motion at a position
in the field specified by the vector coordinate x, where both u and x
are referred to axes such that the fluid has no average motion.

Further information is necessary to specify the variation, if any,
of the density p and kinematic viscosity v ( = u/p). The simplest case
is clearly that of an isothermal fluid (which is free from external
force) for which p and v are cunstant with respect to position and
time, and this case also corresponds to that normally encountered
in the laboratory or, provided the scale is small enough, in the
atmosphere. We shall therefore assume p and » to be uniform.

As in other branches of fluid dynamics, we shall assume thatthe
Navier-Stokes equation of motion is valid. The variation of u
with x and time ¢ then satisfies

du 1
3 +u.Vu= —5?p+v?’u, (1.2.2,

where V represents the gradient operator with respect to the
coordinate system x, and p represents pressure. The validity of this
equation will be taken as a fundamental premise; the a prior
justification is that we see no reason why the medium should not
behave as a fluid, characterized by the parameters p and v and by
differentiable functions u and p, for turbulent motions equally as
for the many non-turbulent motions for which its validity has been
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amply confirmed by experiment. Confirmation that the adoption of
(1.2.2) leads to predictions in agreement with observations of
turbulent motion has also been obtained and will be described later.
It has occasionally been speculated in the literature of the subject
that since turbulence is a mixture of many different subsidiary
motions having different length scales, there may exist some
subsidiary motions whose length scales are so small as to be
comparable with the mean free path (for a gaseous medium), and
if this were true the Navier-Stokes equation certainly would not
apply to these small-scale motions. However, the action of viscosity
i1s to suppress strongly the small-scale components of the turbulence,
and we shall see that for all practical conditions the spectral distribu-
tion of energy dies away effectively to zero long before length scales
comparable with the mean free path are reached. As a consequence
we can ignore the molecular structure of the medium and regard it
as a continuous fluid.

The set of equations (1.2.1) and (1.2.2) is now sufficient to
determine u and p as functions of x and ¢ when the boundary
conditions (with respect to both x and ¢) are specified. In a problem
of non-turbulent, or laminar, motion the boundary conditions are
specified definitely, and, provided the boundary conditions are
complete, a definite and (usually) unique solution can be obtained,
at least in principle. In some cases of turbulent motion the appro-
priate conditions are as for the corresponding laminar motion
together with a perturbation of the velocity distribution. For
instance, the classic Reynolds problem of flow which enters a tube
smoothly, but with a small perturbation, and becomes turbulent
farther down the tube, could be formulated in this way. In such
cases the turbulence develops from the perturbation by means of
a transfer of energy from the (initially) smooth flow, and the exact
nature of the perturbation is not important. In other cases, among
which is homogeneous turbulence, turbulent motion is given as part
of the initial conditions and the problem is to follow its history.

In the case of homogeneous turbulence the boundary conditions
with respect to x are specified, in effect, by the statistical uniformity
of the motion with respect to position and need no further considera-
tion. (It is, of course, necessary that the fluid extend to infinity in
all directions.) The boundary conditions with respect to ¢ are that
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at some initial instant the velocity is a random function of position
conforming to given probability laws. (The method of specifying
statistically a random function of position will be considered in
Chapter 11.) In practice there is not much chance that this initial
statistical information would actually be known, but it needs to be
known in an idealized determinate mathematical formulation of the
problem.

It is clear that if the initial conditions of the turbulent motion are
known in probability only, we cannot hope to do more than deter-
mine the velocity field at later instants in the same way; nor, of
course, should we wish to do so, any more than we should wish to
determine the instantaneous positions and velocities of the mole-
cules of a gas. It has not yet been established rigorously that it is
possible to do even as much as this; however, the consensus of
opinion is that if a random velocity field is specified statistically at
one instant and if rules (viz., in our case, equations (r1.2.1) and
(1.2.2)) are given for determining the way in which any particular
velocity distribution changes with time, then the subsequent
random velocity field is statistically determinate. Hence the
mathematical formulation of the problem of homogeneous turbu-
lence is this: Grven an infinite body of uniform fluid in which motions
conform to the equations (1.2.1) and (1.2.2), and given that at some
instial instant the velocity of the fluid is a random function of position
described by certain probability laws which are independent of position,
to determine the probability laws that describe the motion of the fluid
at subsequent times.

Now the class of probability laws specifying a random infinite
field of velocity is very wide, and we are not interested in all of
them as possible initial conditions of the turbulent motion. For
instance, we should not be interested in those which permitted
discontinuities in the spatial distribution of velocity. However, even
when such obviously unreal cases are excluded, the range of varia-
tion of the initial statistical conditions is too broad for the investiga-
tion of particular sets of initial conditions to be of significance (even
supposing it to be possible mathematically). Instead, we put our
faith in the tendency for dynamical systems with a large number
of degrees of freedom, and with coupling between these degrees of
freedom, to approach a statistical state which is independent
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(partially, if not wholly) of the initial conditions. With this general
property of dynamical systems in mind, rather than investigate the
motion consequent upon a particular set of initial conditions, we
explore the existence of solutions which are asymptotic in the sense
that the further passage of time changes them in some simple way
only. Since the energy of turbulent motion is being dissipated by
viscosity continually, we cannot have the simple situation of the
kinetic theory of gases, in which the asymptotic statistical state of
the molecular motion is independent of time. The elucidation of
the kind of asymptotic statistical state to be expected is the crux of
the problem of homogeneous turbulence, and we shall have more
to say about it in later chapters. Meanwhile it should be kept in
mind that the general method of attacking the problem as formu-
lated at the end of the preceding paragraph is indirect, inasmuch as
we attempt to guess the ultimate statistical state of the turbulence
and to show that this statistical state would follow from a whole
class of different initial conditions.$

1.3. Brief history of the subject

It will perhaps be useful, as an introduction to the work to be
described in the following chapters, to recount briefly the major
contributions to the subject made over the last fifteen years. We
shall see later that the principal difficulties in the way of a solution
of the problem of homogeneous turbulence arise from:

(a) the three-dimensional character of the velocity field,

(b) the non-linearity of the equation of motion, and

(¢) the random variation of the velocity and the need for
statistical methods.

t+ There is clearly a close correspondence between the subjects of turbulence
and statistical mechanics. Statistical mechanics is concerned with the properties
of a large number of particles whose motion conforms to certain collision laws,
whereas turbulence is concerned with a continuum whose motion conforms to
(1.2.1) and (1.2.2). In both cases the interest lies in asymptotic statistical states
which are independent of a wide class of initial states. One might also say that
statistical mechanics shows how comprehensive and far-reaching are the
deductions made on the basis of the particle structure of marter, irrespective of
the nature of these particles and the precise form of the laws of their interaction.
It is a very striking fact that some of the recent work in homogeneous turbulence
(see Chapters vi-viit) is tending to ignore the precise form of the equations
(1.2,1) and (1.2.2) and to make use of their general features (e.g. dissipation of
energy, non-linearity) only.
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These three difficulties occur in an interconnected fashion and
are not to be overcome quite separately, but the history of the
research carried out on the problem is largely an account of
contributions to one or other of the three different aspects.

The origin of the subject lies in G. I. Taylor’s pioneering work in
1935 (Taylor, 1935a). Prior to this time there had been no clear
recognition and acceptance—save in an earlier paper by Taylor
himself (Taylor, 1921)—of the fact that the velocity of the fluid in
turbulent motion is a random continuous function of position and
time, and theories of turbulence were based on analogies with the
discontinuous collisions between discrete entities that have been
studied in the kinetic theory of gases. Taylor broke with these
primitive concepts and introduced the correlation between the
velocities at two points as one of the quantities needed to describe
the turbulence. As soon as the statistics of continuous random
functions were considered, it became clear that the assumption of
statistical homogeneity would greatly simplify the analysis; Taylor
went further still and considered isotropic turbulence. In this same
paper Taylor described measurements which showed that the
turbulence generated downstream from a regular array of rods in
a wind tunnel was approximately homogeneous and isotropic. Thus
a clear guide to the opportunities for further theoretical and
experimental work was established.

Further important contributions to the subject were made by
Taylor in 1938. The first was a consideration of the mechanical
processes represented by the non-linear term (found to be related
to the mean value of the product of three velocities) in the equation
for the decay of mean-square vorticity (Taylor, 1938a). This work
demonstrated clearly two important consequences of the non-
linearity of the dynamical equation: the skewness of the probability
distribution of the difference between the velocities at two points,
and the existence of an interaction or modulation between com-
ponents of the turbulence having different length scales. The second
contribution was the introduction into turbulence theory of a result
obtained in pure mathematics, viz. that the Fourier transform of the
correlation between two velocities is an energy spectrum function
in the sense that it describes the distribution of kinetic energy over
the various Fourier wave-number components of the turbulence
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(Taylor, 19385). This contribution to aspect (¢) of the problem has
been developed further in more recent years.

Soon after Taylor's work T. von Kdrmén perceived that mean
values of the products of the velocities at two (or more points) were
tensors, which immediately enabled the analysis to be expressed
more concisely and greatly facilitated the deductions from the
assumption of isotropy (v. Kirmin, 19374, ). In particular,
v. Kdrmdn and Howarth (1938) were able to show that mean values
of the product of two and of three of the components of the velocities
at two points could each be expressed in terms of a single scalar
function when the turbulence is isotropic; the Navier-Stokes
equation then provides a differential relation between these two
functions, the independent variables being the time of decay and
the distance between the two points at which the velocities are
taken. (The idea of using the Navier-Stokes equation to relate
mean velocity products of different orders was first advanced by
L. Keller and A. Friedmann (1924); however, without the simpli-
fication of homogeneity and isotropy it was not possible to proceed
far.) Another big advance in the development of the kinematics of
mean values of velocity products in isotropic turbulence came when
H. P. Robertson (1940) showed how an isotropic tensor of arbitrary
order could be expressed in terms of the known invariants of the
rotation group. The same methods have been used to analyse the
kinematics of axisymmetric turbulence (Batchelor, 1946; Chandra-
sekhar, 1950a). All this work is, in effect, an attack on aspect (a) of
the problem.

The first attempts to handle the dynamical problem systematically
were made by v. Kdrmén (19374, b, 1938) who introduced, for the
purposes of simplification, the assumption of ‘self-preservation’ of
the shape of the velocity product functions during decay. This
reduced the number of independent variables in the dynamical
equation to one, but the equation still contained two dependent
variables (viz. velocity products of order n and n + 1), so that definite
results could only be obtained under suitably restricted conditions.
There was available some experimental evidence that the correlation
functions did not preserve their shape over the whole of the range
of the distance between the two points, and it gradually became
clear that the assumption of self-preservation, or similarity during
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decay, while a useful mathematical tool, would need a sound
physical basis if its limitations were to be understood.

The required physical basis for one kind of similarity of the
turbulence was suggested some years later by A. N. Kolmogoroff
(1941 a,¢). This work was overlooked in countries other than the
U.S.S.R. for several years, but its profound importance has since
been appreciated and itis now the starting-point for many researches.
Kolmogoroff's hypothesis was that the small-scale components of
the turbulence are approximately in statistical equilibrium. These
small-scale components owe their existence to the non-linear inter-
change of energy between different wave-number components, and
Kolmogoroff postulated that the equilibrium would be universal,
apart from the effect of variation of two parameters, one the viscosity
of the fluid and the other determined by the large-scale components
of the turbulence. Thus, when these two parameters are given, the
complete statistical specification of the small-scale components of
the turbulence is determined, and many definite predictions may
be made from dimensional analysis. Experimental support for the
theory was not available immediately, owing to the very small size
of the components to which the theory applies at the Reynolds
numbers ordinarily used in the laboratory, but there is now
sufficient evidence to warrant confidence in the theory. The idea of
a statistical equilibrium of the small-scale components was also put
forward, independently, by A. Obukhoff (1941), by L. Onsager
(1945), and by C. F. von Weizsicker (1948).

Much of the work stemming from the equilibrium theory has
been concerned with the application to special situations, such as
turbulent shear flow, atmospheric diffusion, turbulence in an
electrically conducting fluid, in which the universality of the
statistical equilibrium provides useful information. Other work
has been devoted to a more detailed study of the equilibrium, e.g.
to a consideration of the distribution of energy over the wave-
numbers within the equilibrium range. For this purpose it is
necessary to make some assumption about the non-linear transfer
of energy across the spectrum. An assumption of this kind was in-
troduced by W. Heisenberg (1948a), but itis not wholly convincing,
and recent measurements show that it does not lead always to
accurate results. ‘I'he determination of the transfer of energy across
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the spectrum produced by the non-linear inertia forces is still the
central difficulty of the problem of turbulent motion.

An alternative plan for investigating the effect of the non-linear
inertia forces has been followed by J. M. Burgers over a number
of years beginning in 1939 (for a review, see Burgers, 1948a).
Burgers has explored the solutions of systems of equations which
are simpler than (1.2.1) and (1.2.2) but which retain the essential
features of the non-linear term and the viscosity term. In particular,
he has explored the tendency for the non-linear terms to produce
steeper gradients of velocity as time proceeds, and the tendency for
viscous forces to damp out rapid changes of velocity, the two effects
together leading to the permanent existence of ‘dissipation layers’
in which there is a high rate of viscous dissipation of energy. Some
of the results obtained for the model system are strikingly similar
to those obtained experimentally, and Burgers believes that in-
vestigation of the model system will suggest methods of attacking
the full Navier-Stokes equation. However, it has not been found
possible to obtain solutions of the model system which are random
functions of position and time, so that the link between the model
system and reality is not yet close.$

On the experimental side, a large number of measurements of
mean values of different velocity products has been made since
193§, principally with the hot-wire anemometer. This instrument
is capable of giving an electrical signal which is proportional to the
instantaneous velocity of the fluid at the point where the wire is
placed, and a great deal of skill has been used to devise electrical
circuits that will analyse the output signal in such a way as to give
some particular mean value. These developments in technique will
not be described in this book, but the importance of the part which
they have played in the research should not be forgotten, and the
fact that some knowledge of the errors involved in the different hot-
wire measurements is necessary for a proper appraisal of the
validity of theoretical predictions should be kept in mind. Examples
of the kinds of measurement of which the hot-wire anemometer is
capable are to be found in papers by A. A. Townsend (e.g. 1947),

t Note added in proof: But see a recent paper by J. M. Burgers, *Sur un
modele simplifi¢ de la turbulence’, Publ. Sa. Tech. Mimistére "' Air, no. 251,

1951.
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who has supplied many of the measurements on which our present
ideas about homogeneous turbulence are based, and S. Corrsin
(1947).

One of the first measurements to be made was of the decay of
kinetic energy as a function of time, and it has been repeated many
times under difierent conditions (Dryden, 1941; Batchelor and
Tow.asend, 1948a; Stewart and Townsend, 1951). There seems
. ow to be general agreement that the decay proceeds according to
a very simple law for an initial period after the formation of the
turbulence, viz. that the kinetic energy (per unit volume of fluid)
is inversely proportional to the lapse of time since the (virtual)
instant at which the energy would have been infinite. There have
been several attempts to explain this decay law but none is com-
pletely satisfactory. An explanation which seems promising is that
this decay law is one of the properties of an asymptotic statistical
state of the larger, energy-containing components of the turbulence;
it is postulated that these large-scale components of the turbulence
are in a kind of quasi-equilibrium, which, owing to the decay in
time, is one degree less universal than the absolute equilibrium of
the small-scale components (Heisenberg, 19488). A difficulty with
this theory is that the correlation functions do not seem to change
with time in the simple self-similar manner that would be expected
from the quasi-equilibrium. Also it is not easy to account for the
termination of this initial period of decay. However, these develop-
ments are much too recent to be written up as ‘history’, and they
will be described in their proper place later.

After a sufficiently long time of decay, the energy of the turbulence
is found to decrease as the (— §) power of the time. This has been
explained (Batchelor and Townsend, 19485) as one of the con-
sequences of the non-linear inertia terms being negligible. In this
final period of decay the velocity satisfies a heat-conduction type
of equation, and a complete determination of the statistical para-
meters describing the motion at any time can be made.

Simultaneously with all the above work there has been a steady
development of the purely mathematical problems associated with
stationary random functions, and the mathematical results have
gradually been introduced and exploited in turbulence theory.
Taylor's usc of the spectrum function which is the one-dimensional
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Fourier transform of the velocity correlation has already been
mentioned. Later J. Kampé de Fériet (1948) and G. K. Batchelor
(1949 a)introduced the three-dimensional spectrum function, which
provides a suitable tool for the application of the various similarity
hypotheses, and investigated many of its exact properties. Heisen-
berg (19484) had already achieved the same end, in effect, by work-
ing heuristically in terms of the Fourier coefficient obtained from
a three-dimensional analysis of the velocity field. Three-dimensional
Fourier series were also used by G. Darrieus (1938) in a paper which
anticipated much of the later work. On the whole it seems probable
that the mathematical techniques devised to cope with the three-
dimensional character of the velocity field are not far from their
optimum form. However, many of the mathematical difficulties
arising from the random character of the velocity are not yet fully
resolved.

There are very many isolated papers and incomplete lines of
research which cannot appropriately be mentioned here but will
find a place in later chapters.



CHAPTER 1

MATHEMATICAL REPRESENTATION OF THE
FIELD OF TURBULENCE

2.1. Method of taking averages

Since we are supposing, as a matter of definition, that the velocity
in a turbulent Row takes random values, and since, as a consequence,
we are interested only in the average values of quantities, it is
necessary to lay down rules about the method of taking averages.

What do we mean when we say that the velocity u is a random
function of position x and time ¢? We mean that at a given point
(x, 1) of space-time the velocity u is not predictable from the data
of the problem but takes random values; it is an implication of the
use of the phrase ‘random function’ that these values are distributed
according to certain definite probability laws. We shall assume that
the probability laws describing the velocity fluctuations are deter-
mined by the data of the problem. If we perform the (idealized)
experiment of generating a field of turbulence in some way, say by
sweeping a grid of bars through still air, and subsequently allowing
it to decay, we can measure the value of the velocity at the given
point. (Such an experiment, which supplies a value of u for every
point (x, t), will be termed a realization of the field of turbulence.)
The same experiment repeated many times supplies just as many
different values of u, and we are defining the turbulent motion to
be such that as the number of experiments tends to infinity the
frequency distribution of u tends to a limiting forin which is
determined by the ostensible data of the problem (i.e. by the shape
of the grid of bars, etc.),

‘T'his interpretation of u as a random variable applies for every
point (x,f), and in general there will exist a statistical connexion
between the random values of u that occur at ditferent points in
space-time. ‘T'he specification of this statistical connexion will be
included in the joint-probability distribution of the values of u at
the chusen points in space-time, and there will be one such distri-
bution for every different set of points in space-time. All these
joint-probability distributions are a part of the specification of the
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random function, and are determined (or so we shall assume) by
the ostensible data of the problem; if we wish we can also regard
them as measurable from a large number of realizations of the field.

We can now define a mathematical expectation, or probability
average, or ensemble average, by reference to the joint-probability
distributions of the values of u at different sets of points in space-
time. If F{u,,u,, ...,u,) is some function of the valuesu,, u,, ..., u,
which the velocity takes at the points (x,,1,), (x5, %), ..., (X, ,)
respectively, F is a random variable and its probability average is
defined as
F-J‘FP{u,,u,,...,u,)du,du,...du_, (2.1.1)

where P(u,,u,, ...,u,) is the joint-probability density function of
u,, Uy, ..., W, and the integration is over all values of uj, u,, ..., u,.
This is the type of average that is being referred to, in general, when
the overbar symbol is used in the sequel.

When the turbulence is spatially homogeneous, u is said to be
a stationary random function of x. The function P is then inde-
pendent of the location (but not of the relative configuration) in
space of the set of n points (x,,1,), (X, 83), ..., (X, 1,); that is, the
joint-probability distribution of the values of the velocity at the n
points (x,+V,1,), (Xg+¥,4),....(x,+Y¥,1,) s independent of the
space vector y. Likewise the average F is independent of the
locdtion in space of the n points.

The property of spatial homogeneity says, in effect, that all
regions of space are similar so far as the statistical properties of u
are concerned, and this suggests that the result of averaging over
a large number of realizations or trials could be obtained equally
well by averaging over a large region of space for ane realization.
Such a space average of the quantity F might be defined as

lim --I",-,J.F(u,.u,,m.u_}dy (2.1.2)
F-+m®

where u,, u,, ..., u, are now the values of the velocity at the points
(%, +y,4). (% + Y. t3), ....(x, +¥,¢,) for any one realization of the
field of turbulence, and Vs the volume of y-space over which the
integral is taken. For this method of averaging to have any signi-
ficance, it is necessary that the limit exist and that it be independent
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of the definition of the volume V. It is one of the objectives of
ergodic theory to show that these conditions are in fact satisfied,
and that the space average thereby obtained is the same for almost
allt realizations of the field and is identical with the probability
average (2.1.1), provided that the function F satisfies certain simple
conditions (viz. provided Fis finite and continuous in mean-square).
Ergodic theory] is beyond the scope of this book and we shall be
content to assume the result stated.

Consequently, for our problem of homogeneous turbulence and
for suitable choices of the function F, the space average of F for
almost any realization of the turbulence field is to be regarded as
identical with the probability average, and either method of
averaging may be employed at will. On the other hand, time
averages play no part in our problem, although they will be relevant
in the many problems of turbulent motion which is statistically
steady.

These rules for taking averages apply to the idealized mathe-
matical problem of homogeneous turbulence, and we must now
consider whether they correspond to the procedure actually used in
wind-tunnel experiments, As has already been mentioned, the
usual method of generating turbulence in the wind tunnel is to
place a grid, or regular array of bars, across the wind-tunnel stream.
The resulting turbulence is statistically steady and is not spatially
homogeneous, although it may be assumed homogeneous to a good
approximation for most purposes. The decay with time in the
idealized problem is thus replaced by decay with distance from the
grid in the experimental field; stages of decay in the two problems
may be compared by comparing the values of some simple average
quantity, such as the mean kinetic energy. Measurements are made
by placing a hot-wire anemometer at a point fixed relative to the
grid and by recording the variation with time of the fluid velocity
at the position of the hot wire. An average value of the required
function of the velocity is then obtained by taking a mean over
a long time with the aid of an appropriate instrument. Thus this
experimental average is a time average for a field of turbulence

+ That is, for all except a subset of r=alizations of relative measiire zern,

1 See A. Khintchine, ‘Korrelationstheorie der stationiiren stochastischen
Prozesse', Math. Ann. 109, 1933, 604-15, and E, Hopf, ‘Ergodentheorie’,
Ergebn. Mnl.ll. Berlin, 8, 1937, 63-151.
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which is approximately but not exactly identical with our idealized
field. Since the experimental field of turbulence is such that the
velocity at a point fixed relative to the grid is a stationary random
function of time, we can anticipate, again assuming the applicability
of ergodic theory under suitable conditions, that a time average is
identical with a probability average for the experimental field.t

It seems, then, that the conventional measuring methods provide
a time average, and thereby a probability average, for the experi-
mental, statistically steady field of turbulence, while our theory is
concerned with a probability average for the idealized spatially
homogeneous field (at the same stage of decay). Hence to the extent
that the two fields of turbulence are statistically identical at corre-
sponding stages of the decay, experimental averages will (almost
always) be identical with the theoretical averages to be discussed

in this book.

2.2, The complete statistical specification of the field of
turbulence
We return now to the idealized field which is spatially homo-
geneous, and consider how this field may be specified. Granted that
we know how averages should be taken, what mean quantities are
required for a specification that determines the field statistically?
It is a premise of probability theory] that a random function f{z),
say, defined for all values of a, is determined statistically by the

+ There is a simple physical picture which is consistent with this conclusion,
just as there is in the case of turbulence which is spatially homogeneous. If we
inquire into the ultimate origin of the variation with time of the velocity in the
turbulent flow downstream from the grid, we find that it must lie in the very
small Auctuations in velocity which inevitably exist in the flow upstream of the
grid. These very small fluctuations, which are not included in what we have
called the ostensible data of the problem, act as a trigger for the unstable, steady
flow that is produced in the wake of the grid. Thus with the passage of time there
is a continuous variation of the boundary conditions (at the grid) of the field of
turbulence generated on the downstream side of the gnd. Moreover, this
variation of the boundary conditions is random (the small velocity fluctuations
on the upstream side of the grid are in fact a turbulent motion created by the
various obstacles and irregularities in the wind tunnel). Hence the experimental
time average is effectively a kind of probability average. However, we cannot
be quite certain that a particular region of probability phase space is not being
selected by the temporal variation of the boundary conditions at the gnd, and so
an appeal to the ergodic hypothesis is still necessary.

1 See A. N. Kolmogoroff, Grundbegriffe der Wahrscheinlichheitsrechmung,
Berlin, 1933, and H. Cramér, Mathematical methods of statisties, Princeton, 1946.
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complete system of joint-probability distributions of the values of
the function at any n values of @, where n may take any integral
value. Likewise the infinite field of turbulent motion is determined
statistically by the complete system of joint-probability distribu-
tions of the values of the vector velocity u(x, t) at any n points of
space-time. If we require that the history of each realization of the
velocity field be governed by the equations of momentum and
continuity—as has already been done in § 1.2—this specification is
clearly over-sufficient (although it may serve as a description of the
motion). By formulating the dynamical problem as in § 1.2 we have
in fact supposed that the statistical properties of the turbulence field
at different values of ¢ are uniquely related by the equations of
momentum and continuity. Hence we shall usually be interested
in the specification of the field of turbulence at a definite instant of
time, and this will require a knowledge of the complete system of
joint-probability distributions of the values of the velocity u at any
n points of space at the appropriate value of ¢. Since the turbulence
is spatially homogeneous these probability distributions depend
only on the relative positions of the n points in space, and are
independent of the location in space of the configuration of n points.

With this knowledge of how the field of turbulence may be
specified statistically at any given value of ¢, we now know the
maximum amount of data about the velocity field at the initial
instant that must be supplied (in principle) in order that the mathe-
matical problem of homogeneous turbulence as formulated in § 1.2
should be determinate. Likewise we know what information about
the field at a variable value of # must be derived before the problem
can be said to be completely solved. It is very probable that various
physical conditions restrict the very wide class of turbulent motions
implied by the above specification of a random function. For
instance, the condition that the velocity is a continuous function of
position and the incompressibility condition (1.2.1) each reduce
the amount of data required to specify the field of turbulence.
Moreover, we hope—and there is experimental evidence to support
the hope—that the action of the Navier-Stokes equation of motion
is to direct the random velocity field into a certain simple statistical
state and so to restrict further the data needed to specify the ultimate
velocity field.
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Nevertheless, it is clear that we have little hope of being able
to go far with the problem analytically unless we confine attention to
the simplest kinds of averaged quantity (i.e. those corresponding to
small values of n). The latter plan has usuzlly been adopted in past
research on the grounds of expediency, but we should recognize
its limitations. Unless the field of turbulence is specified completely
at some initial instant, or unless it should turn out that there are
some features of the turbulence that are dynamically independent
of each other, it is impossible to get a determinate set of dynamical
equations for any of the quantities describing the turbulence at any
later instant. In other words we may expect to be unable to find
sufficient dynamical equations to solve for the simple mean values
under discussion,

2.3. Mean values of velocity products

It is readily seen that the joint-probability distribution of the
values of the velocity at any n points is uniquely related to the
complete set of averaged products of the values of the velocity at
these n points, provided the probability distribution satisfies
certain weak conditions. For example, for the simple case n =1, we
can define a characteristic function ¢(a) as the (three-dimensional)
Fourier transform of the probability density function P(u), i.e.

P(a) -J'e*‘-' P(u)du

=X Sy,

p=0

provided it is possible to expand ¢(a) as a Taylor series in the
components of a. The coefficients in the series are proportional to
the mean value of products of the components of u, and the
complete set of coefficients in the series—which determines P(u),
provided the Fourier transformation can be inverted—is determined
by the complete set of product mean values. Similar remarks can be
made for an arbitrary value of », with the aid of a jn#-dimensional
Fourier transformation of the joint-probability density function.

The averaged products of the values of the velocity at different
points of spacet are the principal working tools of the analysis in

t And, occasionally, at different times. The kinematical analysis in this and
the next chapter is concerned with space intervals only, since the extensions
necessary to allow alsu for time intervals are usually obvious,
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succeeding chapters. The mean value of the product of m com-
ponents of the velocities at n different points (m > n) will be called
an ‘m-order n-point product mean value'. These mean values are
functions of the configuration formed by the » points (but not of the
location of the configuration) and of the time of decay. When n=1
the accepted term for the mean value is ‘velocity moment’ (of the
m-order). When m =n = 2, the mean value becomes the covariance
of the velocities at the two points, although the term ‘velocity
correlation’ is very firmly established in the literature and will be
used in this work. Less justifiably, the term ‘triple-velocity
correlation’ is used in the literature for the product mean value
given by m = 3, n=2; there seems to be no risk of confusion in this
term, so that in view of the special place of this mean value in the
theory it might as well be retained.

Each of the m velocity components occurring in an m-order
product mean value may be any one of three orthogonal com-
ponents, and the general mean value has 3™ scalar components.
Each of the m velocity vectors from which the product is formed
transforms, under change of the coordinate system, like a tensor of
the first order (and this property is retained after the linear operation
of taking a mean has been made), so that the 3™ components of the
m-order mean value form (in Euclidean space) a tensor of order m.
We shall make use of this fact in notation and in the derivation of
the general functional form of the mean value.

The configuration formed by the n points at which the velocities
are taken can be specified by n— 1 space vectors; for example, by
the position of n— 1 of the points relative to the remaining point.
Hence with a Cartesian coordinate system and the usual tensor
index notation, we can write the m-order n-point velocity-product
mean value as

u(Xy, £) uy(Xg, 1) ... 4 (X,,, 1) = O (r,1), (2.3.1)

where Q{7 , is a tensor of order m, and r is a 3(n — 1)-dimensional
vector which specifies the configuration formed by those n of the
points X,,X,, ..., X,, that are different.

It will be seen later that it is also useful to consider the Fourier
transforms (in the complex form, for neatness) of velocity-product
mean values with respect to the space vectors on which they depend.
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After taking 3(m — 1) repeated scalar Fourier transforms of O
(assuming for the moment that this operation is permissible) we
have a (complex) quantity }{7. , which is a function of the new
3(n ~ 1)-dimensional vector x:

A e)= () [OR s erdn  (233)

where ¢ =/~ 1, dr represents an element of volume in r-space and
the integration is over all values of r. {7’ , is a linear functional
of Qi7" » and hence is also a tensor of order m. M7° _, and O ,
are also related by the Fourier transform relation inverse to (2.3.2),

o (r,1)= J'm..w)e'"du. (2.3.3)

The unsymmetrical distribution of 27 factors in (2.3.2) and (2.3.3)
is chosen (consistently) for later convenience.

The quantity ., will exist when the integral [|QF., dr

converges.t This will not be the case, in general, when m > 3 (nor
when m € 3, if the mean velocity is not zero everywhere), for then
the velocity product can be split into two parts, each of which has
a non-zero mean irrespective of the distance between the two sub-
configurations on which the two parts depend. In such cases, we
must first subtract from the mean value (2.3.1) various products of
lower order mean values formed from

ulx,), ulx,), ... up(x,),

chosen in such a way that the resulting quantity vanishes whenever
r? —» 0o (which procedure is equivalent to considering the m-order
cumulant tensor of the velocities u(x, ), u(xy), ... u(x,)). The condi-
tion for the Fourier transform to exist will normally be satisfied by
this reduced velocity product mean value, or cumulant, and we shall
regard the symbol O ,, as applying to the cumulant whenever
the question of taking the Fourier transform of velocity product
mean values is involved.

Almost all the existing analysis of homogeneous turbulence can
be carried out either in terms of velocity-product mean values or

t+ See E. C. Titchmarsh, Introduction to the theory of Fourier integrals,
Oxford University Press, 1917.
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in terms of their Fourier transforms. The choice of function to be
used will usually depend on the type of equation under discussion,
and there will sometimes be a considerable gain in simplicity of the
analysis with one particular kind of function. However, we should
not lose sight of the fact that in general it is the product mean values
that are measured in the laboratory.

In future work we shall also need to consider the mean value of
the product of velocities and spatial derivatives of velocities at
different points. A simple example of such a mean value is

u(x,,1) @%) con Up(Xpy 1)

Provided none of the factors in the mean value, other than u(x,, 1),
depends on x, (that is, provided x, is different from x,,x;, ..., X,,),
and since the operations of averaging and differentiating may
readily be shown to permute, this mean value is equal to

a m}
ﬂ Q‘u p{r! t)l

and further reduction depends on the manner in which r depends
on x,. If the n— 1 subvectors which comprise the 3(n— 1)-dimen-
sional vector r are the positions of n— 1 of the points of the con-
figuration relative to x,, we have

9 _ @ @ _ _ [ 8 P 9 ;I
XXy Ory)y  UAXy)g or)e  fa-r)
for operations on mean values such as Q4" ,(r, 1).

The spatial derivative of a scalar quantity transforms, under
a change of coordinate system, like a tensor of the first order.
Likewise the spatial derivative of a tensor of order m is itself
a tensor of order m + 1, and each extra differentiation adds one to

the order of the resulting tensor quantity. Thus a{f) g . p I8
e

a tensor of order m + 1, and (2.3.3) shows that its Fourier transform
is the tensor «(x,), X{7".. p. also of order m + 1 (where x,, ..., %, _, are
the vectors complementary tor,, ..., r,_, in the Fourier transforma-
tion). We see that in general differentiation of a velocity-product
mean value with respect to one of the components of r is equivalent
to multiplication of its Fourier transform by (¢ times) the corre-
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sponding component of x; this elimination of differentials is the
reason why analysis in terms of Fourier transforms is frequently
simpler.

An example of mean values involving velocity derivatives is
provided by the introduction of the incompressibility condition
(1.2.1), viz. du (x, 1)

ox; =%
where the repeated index 7 is to be regarded as being summed over
all three possible values of the index.+ One of the conditions which
the tensor Q{7 (r, #) must satisfy as a consequence is

EEEQ(U-.,..:(I, t)= g(gl‘};wru,(r, t)=o, (2.3.4)

and there is a similar equation for each of the vectors (except x,)
which occur singly in the group x,,x,, ...,x,,. If x, occurs singly,
we have
_E_ny S t)--[—j---{- + 0 Qﬁ,"‘ (r,t)=o0.
oxy)y T ory)e T Aty T
, (2.3.5)
The conditions on X47°.. ,(x, t) corresponding to (2.3.4) and (2.3.5)

" (3¢,)4 X&ﬂ..p(“. t)=o, (2.3.6)

and [0+ .- + (% n) ] XET. » (%, £) =05 (2.3.7)

the consequent restrictions on the possible form of X7, ,(x, f) are
readily taken into account, as will be seen later.

2.4. General properties of the velocity correlation and

spectrum tensors

The velocity correlation tensor (i.e. the second-order two-point
product mean value) and its Fourier transform are of special
importance in turbulence theory. The velocity correlation is the
simplest of the product mean values, apart from the almost trivial
one-point product means, and its physical significance (and, even
more so, that of its Fourier transform) is easily understood.

4+ This convenient summation convention will be used without explanation
in future,
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Furthermore, we shall see later that the joint-probability distribu-
tion of the velocities at two points is not very different from a normal
distribution, so that a knowledge of the velocity correlation carries
with it an approximate knowledge of the higher order mean values
involving the velocities at two points. In this section we shall
consider some of the general mathematical results concerning the
velocity correlation, as a preliminary to several of the later chapters
in which the analysis will be carried further making use of the
particular properties of turbulence.

The velocity correlation tensor for two points separated by the
space vector r (which is the three-dimensional vector defining the

configuration of two points) is
Ryj(r) =udx) ufx+r);
the dependence on ¢ will not be shown explicitly unless different

instants are under consideration. An immediate geometrical
property of the velocity correlation in homogeneous turbulence is

Ry(r)= Ry ~¥) (2.4.1)
We shall assume (on the grounds, already stated in Chapter 1, that

discontinuities could not continue to exist in the presence of viscous
forces) that u(x) is a continuous function of x, from which it follows

o Em,(:+r+h)-u,(:+r)]-o.
ie. ;ﬁ-ﬂ [Ry(r +h)—Ry(r)] =0,

showing that R,(r) is continuoust at all values of r. According to
the Schwarzian inequality,
R,(r) € [u}(x).uf{x + )]}

=[Ry(0). Ryf(0)]} (no summation convention here),

and for the particular case i=j, we have

Ry(r) € Ryi(0).

The properties of a general stationary random function (more
particularly, of a scalar function of a scalar argument) have been

4+ ‘The same result can be established under conditions less restrictive—but
also less relevant-——than the assumption that u(x) is continuous.
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studied intensively by mathematicians interested in probability
theory, and it is not proposed to refer to all the resultst here.
However, one fundamental theorem concerning the (velocity)
correlation, established by Cramér, { must be quoted. This theorem
is an extension, to the case of 2 multi-dimensional random process,
of a well-known result due to Khintchine, § and may be stated as
follows:

“The necessary and sufficient condition that R,(r) should be the
correlation tensor of a continuous || stationary random process is
that it should be expressible in the form

Ry(r) -J.@“{u] e dx, (2.4.2)9
where @, (x) is a complex tensor such that

@ [1y00]dx<co,

and (B) O=X,X7®,(x)

is 2 non-negative quadratic form (i.e. ® > o for an arbitrary choice
of the complex constants X,).’

In this statement, dx is written for dx,dx,dx,, the integrals are
taken over the whole of wave-number space, and X7 denotes the
complex conjugate of X,.

t+ Basic theorems will be found in: P. Lévy, Processus stochastique et mouve-
ments browmien, vol. 1, Paris, 1948, and K. Karhunen, ' Uber lineare Methoden
in der Wahrscheinlichkeitsrechnung', Ann. Acad. Sci. fenn. A, no. 37, 1947.
Reviews written from a less purely mathematical point of view are: J. Kampé de
Fériet (1939) and J. E. Moyal, ‘ Stochastic processes and statistical physics’,
Y. R. Statist, Soc. Series B, 11, 1949, 150-210.

{ H. Cramér, ‘On the theory of stationary random processes’, Ann. Math.
41, 1040, 215-30.

§ Loc. cit. (p. 16).

I That is, relating to a function @ which s defined over a continuous range of
values of the argument x.

§ A more genersl form of the condition (2.4.2) is that Ry(r) should be

expressible as f e'*f d¥,,(x), where the function W (x) is not necessarily

differentiable. However, we shall see from the interpretation of @(x) as a
density of kinetic energy in wave-number space that ®,(x) can safely be assumed
in the present context to be a continuous function of ®. The basis for this
assumption (which restricts the analysis essentially in notation only) is that the
non-linear dynamical processes would immediately spread the energy of a line
or step in the spectrum over a continuous range of wave-numbers. See also
§ 5.2,
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For the purposes of our problem we begin with the premise that
R,(r) is a correlation tensor describing homogeneous turbulence,
so that Cramér's theorem establishes that there exists a function
®,(x) with the properties (a) and (8). In view of (@) we can write

Ox)= 5o [ Rofe) e (2.43)

(as mentioned in §2.3 the existence of the Fourier transform of
a product mean value usually needs to be assumed, but in this case
of a second-order product it is established rigorously), and then
(2.4.1) shows that

D () =Dy ~x) =D(x), (2.4.4)

i.e. ®;(x) is a tensor with Hermitian symmetry and
O =X, X7 Dy(x)

is an Hermitian form.
When | r| =0, equation (2.4.2) becomes

R ((0) = u,(x) u(x)= J‘ D, (x) dx, (2.4.5)

showing that ®,(x) represents a density, in wave-number space, of
contributions to u,(x)u(x). A knowledge of all components of the
tensor u,(x) u,(x) is necessary and sufficient to determine the energy
(per unit mass of fluid) associated with an arbitrary component of
the velocity, and we shall therefore call it the energy tensor. Thus
®,,(x) describes a distribution of energy in x-space. Its physical
significance is not given unambiguously by (2.4.5), but we shall see
in the next section that it describes how the energy associated with
each velocity component is distributed over the various wave-
numbers in a harmonic resolution of the velocity field, and ®(x)
will be called the energy spectrum temsor. It is this physical signi-
ficance that makes @ (x)—or its Fourier transform R, (r)—the
most important single quantity describing the field of turbulence.
For an incompressible fluid, (1.2.1) shows that

,,(,)EM-,,_

oy
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From this and a similar relation we find the two continuity

conditions
OR(r) OR(r
a‘r’f )- af:f )-n. (2.4.6)
The corresponding conditions for the spectrum tensor are found
from (2.4.2) to be
(3.43) to K @ () = K, D, () =o0. (2.4.7)

In view of the Hermitian symmetry (2.4.4), only one of these
continuity conditions on R(r) or ®(x) is independent.

J. Kampé de Fériet (1948) has shown that the definition of the
spectrum tensor and the continuity condition (2.4.7) together
impose upon @,(x) a certain functional form. It is known from the
theory of quadratic forms that it is always possible to find a trans-
formation defined by

h=a X, h=bX, Y=qX,
where the unit complex vectors a’, b’ and ¢’ are orthogonal, i.e.
abY =Bt = cjap =0

the transformation being such that the quadratic form @ is reduced
to its diagonal form

=X X]0 (x)=5 YT+ 5, YT+, 15Y5,  (2.4.8)

where s,, 5, and s, are real functions of ». (When @ (x) and X, are
real, this operation amounts merely to finding the direction cosines
a;, bj, c; of the principal axes of the quadratic surface ® = constant.)
Cramér’s theorem requires that ® be non-negative for all X, and
consequently for all ¥, so that each of the coefficients s,, 5, and 5,
must be non-negative. It appears that the meaning of property (b)
in Cramér’s theorem is that when referred to principal axes, and
therefore always, the diagonal elements of @ (x) are separately
non-negative—as indeed we should expect if the diagonal elements
represent a density in wave-number space of contributions to
kinetic energy.

The transformed expression (2.4.8) is valid for arbitrary X, and
if we choose the particular case in which the vector X is parallel to x
the condition of incompressibility (2.4.7) shows that @ is then zero,
Since s,, 5, and 5, are each non-negative, a zero value of @ requires
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each term on the right side of (2.4.8) to be zero. Not more than
two of the orthogonal components Y], Y, ¥; can vanish (since
Y, Y? =X, X?), so that we requiret

Vi=Y=0, s=o,
or, since X is parallel to x,
aik=bik;=0, s3=0,
Hence the expression for ® becomes
O =X, X7, (x)=5Y, VT + 5,1, V7,
showing that the general form of ®,(x) is
®yy(x) =asaf + b, 57, (2.4.9)

where %, a (= ,/(5,)a’) and b (= \/(s5,) b") are orthogonal (complex)
vectors, a and b being functions of x.

An alternative version of (2.4.9) is obtained by making use of the
identity]

KK, agaj '
wetilela,

to eliminate 57, viz.
¢'“(u)=b’(3“-f;—:f)+q¢; (:—'.1:). (2.4.10)

When the turbulence is isotropic, no direction in the plane normal
to x can,be preferred, so that a? =b?, leaving only the first term of
(2.4.10) in this case, as will be found by other methods in Chapter 111,

2.5. Fourier analysis of the velocity field

If we are to make use of the ideas of statistical mechanics, and if
we are to make hypotheses involving the notion of statistical
equilibrium, it is necessary first to decide what we mean by a
component, or degree of freedom, of the turbulent motion. We
should like to find some method of resolving the motion into
a number of components which, for preference, make additive

+ For real quantities the corresponding geometrical interpretation is that

@ = constant represents an elliptic cylinder with its generstors parallel to x.
1 &, is the unit diagonal tensor, which takes the values

dy=1 when i=j,
and dy=0 when i%j,
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contributions to the energy of the motion, and have a clearly
recognizable physical meaning. The demand for additive contri-
butions to the energy suggests immediately that we should represent
the velocity distribution by means of a set of orthogonal functions;
trigonometric functions are then the obvious choice,f since they
neither decrease nor increase their amplitude at infinity, like the
function which we wish to represent.

Fourier analysis of the velocity field provides us with an extremely
valuable analytical tool and one which is well-nigh indispensable
for the interpretation of equilibrium or similarity hypotheses,
Since the wave-length is the parameter specifying the different
Fourier components, Fourier analysis corresponds, in a general
way, to a resolution into components of the motion of different
linear size, It also gives a definite meaning to the idea of the different
degrees of freedom possessed by the fluid. Large-scale and small-
scale components of the motion are not attached to limited portions
of the fluid in the way that different degrees of freedom of a simple
gas are attached to different molecules, but nevertheless we can
think of the turbulent motion as consisting of the superposition
of a large number of different-sized component motions, which
make additive contributions to the total energy and which interact
with each other in a way demanded by the non-linear term in the
equation of motion. The precise form of motion associated with
each component is not of great importance from a physical point of
view, but it will be seen to be a sinusoidal shearing motion, or
transverse plane ‘wave’ (which does not propagate in time, of
course),

Consider first the Fourier analysis of one realization of the whole
velocity field at a given value of ¢. If u(x) were periodic in x, the
appropriate representation would be as a Fourier series. If

10t ax

taken over the whole field were bounded, a Fourier integral would
be appropriate. Neither of these conditions is satisfied when the
+ It can be shown that the choice of trigonometric functions is in fact

necessary if we wish to have a method of representation which is valid for any
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velocity is a stationary random function of position,t and a modi-
fication of these representations is necessary. Consider the function
u(x, X), where X is a disposable parameter, defined by

u(x,X)=u(x) for -X<x <X,

u(x, X)=0 for |x|>4X,
which satisfies the condition for a Fourier integral to exist. The
corresponding (vector) Fourier coefficient for wave-number x is

A(x, X) = -(-E}r-}f, f u(x, X)e-=sdx,

the integration being over all x-space. The difficulty to be faced in
a Fourier analysis of the real velocity distribution is that A(x, X)
diverges as X -»o0. The device that is adopted depends on the fact
that A(x, X) is a rapidly oscillating function of x and that, as can be
shown} rigorously, the limit of

J}, s [ A( x, X )dx,dx,dxg

as X - oo does exist; defining this limit as [Z(x)]5., we have

e—lf:’: — E—'l-l' :2‘1)

(200 = G ) (2

. (““"':f'""') (_:',":ii: “""l‘) dx.  (2.5.1)

(More precisely, the limit exists for almost every realization of the
velocity field, viz. for those realizations for which space averages
exist. It is necessary to regard (2.5.1) as a stochastic integral, i.e.

the corresponding sum converges to a quantity [Z(x)]%. in the sense
that the mean square of the difference between [Z(x)]5 and the
sum tends to zero as the number of terms in the summation

t+ But both may be satisfied by considering hypothetical velocity fields which
differ from the real field in physically trivial respects only; if u(x) is regarded as
being periodic with very large wave-length a Fourier series may be used, and if
u(x) is regarded as being zero outside a very large box a Fourier integral may be
used. The only practical disadvantage of these two procedures—which have
been widely used—is that the orders of magnitude of quantities depending on
the large length which is introduced are not always evident.

1 N. Wiener, ' Generalized harmonic analysis ', Acta Math. 58, 1930, 117-258.
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approaches infinity.)t When x’ and x" differ by a small quantity
dx, we write
A2(e)=

- fumess (ST (F ) (25 s
(2.5.2)

(so that if the derivative A(x) existed, we should have
dZ(x) = A(x) dx, dxydxy
to the first order in dx).
The relation inverse to (2.5.2) 1s

u(x) = |e™*dZ(x), (2.5.3)

where the integration is over all wave-number space. The ordinary
conception of an integral is not adequate here, since the derivative
of the function Z(x) is not finite; (2.5.3) must be read as a (stochastic)
Fourier-Stieltjes integral, of a generalized kind] to take account of
the fact that when the energy spectrum is continuous the function
Z(x) is not in general of bounded total variation. For the purposes
of the present brief account of harmonic analysis it will be sufficient
to regard (2.5.3) as a formal consequence of (2.5.2); when we come
to consider the average properties of the function dZ(x) we shall find
that the difficulties associated with its peculiar behaviour disappear.

The increment dZ(x) is a random variable, since its value at any
» depends on the particular realization of the velocity distribution
u(x), and we are interested primarily in its average properties. The
covariance of the components of [Z(x)]- is found from (2.5.1) to be

[Z200)]%: [Z0)]5: .y .
{zw)'.” il .: () ) e ax

- (?’T. J‘ Ry ).-: ('" "":"') (‘".‘f'_'f!i};;:%:;f'f"_ dxdr

(H)’J. Rifr ).-; (r‘"‘:'c““) dr. (2.5.4)

+ For an sccount of an approach to spectral analysis directly in terms of
stochastic Fourier-Stieltjes integrals, see the Note by M. Loéve on 'Fonctions
aléatoires du second ordre’ at the end of the book by P. Lévy (op. cit. on p. 23).
An alternative spproach which makes use of the ideas of Hilbert space is
described by J. E. Moyal (loc. cit. on p. 25).

1 See N. Wiener, loc. cit. (p. 30), and J. Kampé de Fériet (1949).
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Putting x” —x' = dx and ' =x as before, we find that both sides of
(2.5.4) vanish with dx, but that

: ﬂzf(uiaz,{u] I s
-}:Eﬂ d, degdx, -(:H),J‘R‘,{r}e dr,

=®,(x), (2.5.5)

in view of the definition of @ (x) in (2.4.3). A calculation similar
to that leading to (2.5.4) shows that dZF(x")dZ,(x") is identically
zero unless x’ and »” are so nearly equal that the volume increments
dx’ and dx” overlap in wave-number space, showing that dZ(x’)
and dZ(x") are statistically orthogonal.

The quantity @ (x), introduced as the Fourier transform of the
velocity correlation, is thus found to bear a close relation to the
Fourier coefficients of the velocity distribution. dZ(x)e'™* is the
contribution to the velocity field from an element of volume dx in
wave-number space, and since these contributions are statistically
orthogonal the left side of (2.5.5) represents the density in wave-
number space of contributions to the energy tensor u(x)u,(x).
This is the sense in which the tensor ®,,(x) describes the spectrum
of the kinetic energy of the turbulence. Analytically, we have

g = [ [ere - TZFGTAZT)
-Iﬁiq{u} dx. (2.5.6)

For an incompressible fluid, we find from (2.5.3) that

. dZ(x)=o0. {2.8.7)

Hence the vector dZ(x) can be expressed in terms of two orthogonal
components each of which is orthogonal to x, and the link between
(2.5.5) and the general form (2.4.9) for ®(x) is immediately clear.
If the fluid is not assumed to be incompressible, dZ(x) has, in
general, a component parallel to x, which represents a plane longi-
tudinal or compression ‘wave’' (again we are speaking only of the
instantaneous distribution of velocity), and which will make a
contribution to ®,(x). The modifications to the above analysis
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which are necessary when the fluid is compressible have recently
been considered by Moyal (1952).

We shall have occasion in later chapters to consider other
properties of dZ(x)—in particular, the statistical connexion between
values of dZ(x) at different values of x.

The reader who is interested in a more complete mathematical
discussion of the spectral analysis of stationary random functions
should consult the works already cited, beginning with the paper
by Wiener.



CHAPTER 111

THE KINEMATICS OF HOMOGENEOUS
TURBULENCE

Now that we have considered in a general way the mathematical
representation of the field of turbulence, it is necessary to give more
attention to those statistical quantities which are of special physical
importance and which are the working tools of the subject. In
addition, we wish to derive all the consequences of the continuity
condition and of any symmetry conditions which might be imposed
on the turbulence. The analysis in this chapter is exact and
deductive; intuitive hypotheses will not make their appearance
until we consider the dynamics of turbulent motion. In place of
the general discussion, in the preceding chapter, of the joint-
probability distribution at arbitrary points, we shall be obliged, on
the grounds of expediency, to consider only the case n=2. In
general, two-point velocity-product mean values of orders two,
three and four are the only mean values which find a place in
practical theories, although there would be no great difficulty
(beyond complexity) in considering the kinematical conditions
imposed on higher order mean values.

As before, the axes of reference are such that the fluid has no

mean velocity, i.e. D =o.

Constant use will be made of the property of homogeneity in the
following typical manner:

Ouy(x) _ 1 Sui(x)
u(X) oxy T2 ox, =0

3.1. The velocity correlation and spectrum tensors
In this section we continue the discussion of § 2.4 in order to ex-
hibit some of the relations concerning the correlation and spectrum
tensors which are of particular interest in turbulence theory.
Although three-dimensional Fourier transforms are appropriate
to a function of a vector argument, the experimenter can make
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a Fourier analysis (by passing an electronic signal proportional to
the velocity through a filter circuit, or wave analyser) with respect
to one space coordinate only.t The resulting spectrum function is
a one-dimensional Fourier transform of the velocity correlation
tensor, and is obtained from the spectrum tensor @ (x) by inte-
grating over all values of the lateral components of x. For instance,
if a Fourier analysis of the variation of the velocity along a line in
the direction of the coordinate x, is made, the resulting spectrum
function is

1 L)
0(xy) = ;;J‘-aRit(fu 0,0)e "1 "dr,

'E‘J‘j u‘bu(*'n"m‘a)d’«'ld"'l- (3.1.1)

When strong symmetry conditions are imposed on the turbulence,
the relation between ©,(x,) and ®,(x) becomes very simple, and
a knowledge of either one is sufficient to determine the functional
form of the other. In the case i=j=1, @,(«x,) becomes a ‘longi-
tudinal’ one-dimensional spectrum, while i=j=2 or 3j gives a
‘lateral’ spectrum

Correlation and spectrum functions of a single scalar variable can
also be obtained by averaging R;,(r) and ®(x) over all directions of
the vector arguments r and x. Thus we can define new tensors:

S) =53 (R4, ¥ = [0 440, (312

where r=|r|, x=|x|, and the integrations are over the surfaces
of spheres of which dA is an element. The insertion of the factor
(47r%)~! and the omission of the corresponding factor (47«*)~! are

+ More precisely, it is possible to record only the variation in the velocity with
time st a fixed point as the field of turbulence is carried along by the uniform
stream with speed U in the wind tunnel, The frequency analysis of this velocity
variation is assumed to be approximately identical with the wave-number
analysis of the variation of velocity along a line in the direction of the stream
in the corresponding idealized field of homogeneous turbulence. The identifica-
tion of the two spectra is clearly more accurate for smaller values of u*/U?, and
ample evidence exists for its accuracy at all except the smallest frequencies and
wave-numbers under normal experimental conditions. The assumption was
introduced first by G. 1. Taylor (19385), who demonstrated its accuracy in one
particular case by showing that the measured spectrum satisfied the Fourier
transform relation with the measured correlation function, C. C. Lin (1950) has
estimated the error when the sssumption is used in a determination of the
dispersion of the spectrum about zero wave-number and finds that it is negligible.
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intended to give quantities with clear physical meanings; S,(r) is
the average correlation tensor for two points distance r apart, while
¥ (x) dx is the contribution to the energy tensor u u, from wave-
numbers whose magnitudes lie between « and x + dx. The funda-
mental transform relation (2.4.2) between R,(r) and ®;(x) then
shows that

Su(r)-J.lbi,( }""""dx r?,,(x)"“’" (3.1.3)

"i’“{x]- I&,{r} T irm= rSiKr) krsinkrdr, (3.1.4)

i.e. 715,(r) and x~1'¥ (k) are Fourier sine transforms. These tensor
functions of a vector magnitude play an important part in the theory
of isotropic turbulence, since the dependence on the direction of r
or x is then prescribed by the spherical symmetry.

Of particular physical interest is the energy spectrum function

E(x)=§¥ ((x), (3.1.5)

which is the density of contributions to the kinetic energy on the
wave-number magnitude axis (the symbol E is an exception to our
convention that Roman letters denote product mean values and
Greek letters denote their transforms, but is demanded by common
usage). The total kinetic energy per unit mass of fluid is

Jad) f®) = J: E(x) dx. (3.1.6)

When hypotheses of statistical equilibrium of the turbulence are
introduced in later chapters, it will be found desirable to have
available a single quantity which characterizes the part of the
turbulence that is associated with a given length scale, The function
E(x) fills this need, and is the most important single quantity of the
problem—as, indeed, it is in the (kinematically) analogous problems
of ‘white’ light, electrical ‘noise’ and acoustics.

The behaviour of the spectrum tensor ®(x), and of the asso-
ciated functions ¥ ,(x) and E(x), at small values of x can be deter-
mined with the aid of Cramér’s theorem and the incompressibility
condition. We shall need to assume that the first few at least of the
derivatives of ®,(x) at x =0 exist, which is equivalent to assuming
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that the corresponding weighted integralsof R, (r) exist;} stationary
random functions do not necessarily satisfy such conditions in
general, but it will be shown later that experimental evidence
confirms the validity of the assumption in the case of homogeneous
turbulence. In the neighbourhood of x =0, the spectrum tensor
can be written as

where the tensor coefficients Cyy, Cyy, Ciyp depend on time only.
The incompressibility condition (2.4.7) requires

K Coy+ KX Cog+ K KKy Cijpm + Oxt) =0, (3-1.7)
which can be satisfied for all values of x only if
Cy=o.
Then Cramér’s theorem (see §2.4) establishes that
X X CiyyS0 (3.1.8)

for all sufficiently small x and arbitrary X; since the sign of this
expression could be changed by reversing the direction of x, the

only possibility is Cog=0

The expression for ®,(x) in the neighbourhood of x=0 is
therefore

e () = KK Ciim + (), (3-1.9)
where, in view of (3.1.7), the leading coefficient Cyy,, satisfies

E C{h"‘ E C{ﬂ-"‘ﬂ'. (3.[.“3}
permi, I, m permj, I, m
the summations being over all permutations of the indices shown.
We note from (3.1.10) that C,;,,, =0 when i =j = [ = m, corresponding
to the fact that longitudinal ‘waves' are not permitted in an
incompressible fluid. The behaviour of the wave-number magnitude
spectrum defined by (3.1.2) (which is necessarily 2n even function
of ) is thus
W fK) = Cypm | K1 xmd A(x) + O(x®)

=45 Conrt + O(xY), (3.1.11)
t See note on p. 195,
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while that of the energy spectrum function E{(x) is

E(x) = Cx*+ O(x"), (3.1.12)
where the coefficient C is given by

C-?Cm. (3.1.13)

It appears that the density in wave-number space of contributions
to the energy tensor u,u, falls rapidly to zero as the origin is
approached. This result is wholly a consequence of the incompressi-
bility condition; if the fluid is compressible, the expansions (3.1.9)
and (3.1.12) in general begin with terms of zero and second degree
respectively.

3.2. The vorticity correlation and spectrum tensors

It has already been remarked that there is no essential difficulty
in the kinematical consideration of mean products of velocity
derivatives. There is one particular case which deserves special
mention, viz. mean values of products involving the vorticityt

vector w(x)=V x u(x),
of which the components are|

cuy(x)

wy(X) =€ ox, ’

w is an axial vector and (unlike the polar vector u) involves a
definition of a sense of rotation as well as of the vector defined
by the components w,, w, and wy. The correlation between com-
ponents of the vorticity at two different points of space, x and
xX'=x+r, is

B S s an 7
W (X) 0 (X") =€4mEipq —iﬂ %}

== (“Iuatp"!m‘*' aﬂ "n "-J + "u"u mp Ji! "haﬂ

—6#"!13 "‘3;.,5", HJ)'E?(_)

= —8,VR(r )+a—R—"i’ LVIR,(E), (3.2.1)

+ Turbulent motion is by definition mutiuul. since the velocity would not
otherwise be a random function of position,

1 &, is the unit alternating tensor and has the values €, =0 when 1, j and &
are not all different, €, = + 1 or — 1 when i, f and & are all different and in cyclic
or acyclic order respectively.
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in which we have made use of the continuity relation (2.4.6).
Contraction of the indices gives the interesting result

w((x) w(x+r)= —VIR(r), (3.2.2)
which can clearly be generalized to give
[Vx @) [Vx wx+1)) = - VioX) o x+r)=VRy(r)

and a sequence of such relations.

There is now no difficulty in determining the vorticity spectrum
tensor £),(x), defined as the Fourier transform of w(x)w{x"), in
terms of the energy spectrum tensor. For, on substituting (2.4.2)
in (3.2.1) we find

£5(3¢) = (85 & — Ky x7) Dy) — K*Dy(xc). (3:2.3)

Thus the density in wave-number space of contributions to the
mean-square total vorticity is

£2(3¢) = Dy (), (3-2.4)

as is also clear from (3.2.2). It will be found, when we consider the
dynamics of the motion, that this spectrum of mean-square total
vorticity is identical with the spectrum of the viscous dissipation
of kinetic energy. The ratio of the mean-square velocity to the mean-
square vorticity evidently provides one of the most important of
the lengths characteristic of the turbulence. (3.2.2) and (3.2.4) show
that this length is

u(xu@P_[_ R T

X) (X VIR (x) Jr =0
t i
D 4(x) dx E(x)dx
— J‘ - ‘[: v (3.25)
2P, (x) dx . xK2E(x) dx

that is, it is the reciprocal of the dispersion of the energy about the
origin in wave-number space.
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3.3- Symmetry conditions

As already suggested, there is some practical value, as well as
a gain in simplicity, in a consideration of fields of turbulence which
satisfy certain symmetry conditions in a statistical sense. These
new conditions must be imposed on the joint-probability distribu-
tion of the values of the velocity at any n points of space at a given
time of decay. The joint-probability distribution has already been
assumed to be independent of arbitrary translations of the con-
figuration formed by the n points and, with the new assumption of
symmetry of some kind, it becomes independent also of certain
rigid rotations of the configuration relative to the fluid. The axes to
which the velocity is referred must rotate with the configuration of
n points, and it will therefore be more convenient if we consider the
joint-probability distribution of the components, in specified
directions, of the velocities at the n points; the symmetry conditions
then require the probability distribution to be independent of
certain rigid rotations, relative to axes with respect to which the
fluid has zero mean motion, of the configuration formed by both
the set of n points and the directional vectors specifying the
components of the velocity at these points.

In the simple case of turbulence which is spherically symmetrical,
the probability distribution is independent of arbitrary rigid
rotations of the configuration formed by the n points and the various
directional vectors. It is possible to go further and require that the
probability distribution be also independent of reflexion of the
configuration in any plane; this extra condition is included in the
usual definition of isotropic turbulence. Various other possibilities
exist. The turbulence may have rotational symmetry about a given
line, in which case the joint-probability distribution of arbitrary
components of the velocities at any » points is independent of
arbitrary rigid rotations, about the given line, of the configuration
formed by the » points and the associated velocity directions. If,
in addition, the probability distribution is independent of reflexion
of the configuration in planes through and normal to the axis of
symmetry, the turbulence may be said to have axial symmetry.
This is a case which also occurs frequently in practice, since many
of the experimental devices for generating or modifying a field of
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turbulence confer a distinction on one particular direction (viz. the
direction of the uniform stream carrying the turbulence). The final
possibility is that the turbulence has symmetry about a plane only,
i.e. that the probability distribution is independent of reflexions of
the configuration in the given plane.

The method of establishing the consequences of these symmetry
conditions has been expounded by H. P. Robertson (1940). The
typical member (of m-order, m > n) of the set of velocity-product
mean values derived from the joint-probability distribution of the
velocities at n points is displayed in (2.3.1). The corresponding
mean value of the product of velocity components in the directions
of the m unit vectors a, b, ..., h, one for each of the m suffixes

5,y s Py 18
Q(r,s,...,a,b,...)=a.u(x,)0uflx,y) ... hyuy(x,)

=ab, ...k, O (r,s,...).  (3.3.1)

This scalar quantity Q is fully determined by the n—1 vectors
r,s,... describing the configuration of n points, the m vectors
a,b,..., and the probability laws describing the turbulence.
Symmetry conditions provide the information that Q is inde-
pendent of certain rigid rotations and reflexions of the configuration
formed by the vector arguments r,s, ... and a, b, ..., and the task is
to determine the consequent form of Q" consistent with (3.3.1).
This is a purely mathematical problem and has applications to fields
other than turbulence.

Taking first the case of isotropic turbulence, Q is independent of
arbitrary rigid-body rotations and reflexions of the vector con-
figuration; that is, Q is invariant under the full rotation group.
Robertson has pointed out that it is a rigorous result of group
invariant theory that such an invariant function can be expressed in
terms of the fundamental invariants, under the same operation, of
the vectorsa, b, ... and r, s, ... on which Q depends. These funda-
mental invariants are the scalar productst a,b;, a,r;, ;5. %, 8, etc,,
formed from pairs of the various vectors; scalar products like 4,4,
can be ignored since they are unity. In geometrical language, the
invariance of the function Q under arbitrary rigid rotations and
reflexions of the configuration of vector arguments implies that O

+ Which will not all be independent if more than three vectors are involved.
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depends only on the lengths of and angles between these vector
arguments of Q. (The determinants or vector triple products like
€yra;byry are also fundamental invariants under arbitrary rigid
rotations of the vector configuration—having the meaning of
volumes of the parallelepipeds formed by any three of the vectors—
but they change sign when the configuration is reflected in any
point and are therefore not isotropic forms. The square of ¢, a;b;7,
—and likewise the product of two such expressions—has the
required properties, but is itself expressible in terms of the scalar
products a;b;, b,r,, r;a, and r®. Nevertheless, these skew-isotropic
forms are not without their uses, as Roburtson (1940) and Chandra-
sekhar (19504a) have shown.) Hence we have

Ofr,s,...,a,b,..)=0Q(a;b, a;r,, risq, ..., 7% 8%, ...). (3.3.2)

But according to (3.3.1) Q is linear in the components of each of
the vectors a, b, ... and is a homogeneous function of these vectors,
The general expression for Q must therefore be the sum of a number

of terms like 418, 38 7,5,,...) (@7) (b,5,) (cxd) ..,

in which each of the components a,, b,, ¢, d;, ... occurs once only,
in a contracted product, with either another member of the same
group or one of r,,3,, ..., and the scalar coefficient 4 is an arbitrary
function of the scalar products not containing a, b, .... Comparison
with (3.3.1) shows that the corresponding general form of Q] is

O (r,s,...)=ZA(r" 2 75, ..)r858u....  (3-33)
where the summation is over all possible terms such that the
suffixes 1, j, &, /, ... are attached to any one of the vectorsr, s, ... or
occur in pairs in the tensor 8;;. The general procedure will be
illustrated if we write down the general form of isotropic tensors of
the first, second, third and fourth orders which are functions of r
alone (i.e. which involve velocities at two points only):

Q(r)=Ar, (3-34)
Qis(x)=Ar,r, + Bé,y, (3.3:5)
Q,,,(r}-drtr,r,-l-Br@,t-i-Cr,JH-}- Dr,,#.,, {3.3.6)

Qipuex) = Arryryr+ Brir 8, + Cryry 8y + Dryri8 + Enyri 8,
+ Ffirtaﬂ‘l' Gr’ r,J;. +HJ,,JH+ H“.t!“ +jJ"J’*, (3.3.7)

where the scalar coefficients A, B, ... are all even functions of r.
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The extension of these results to the case of other, less restrictive,
symmetry conditions is very simple. The next simplest case is that
of axisymmetric turbulence, when Q(r,s,...,a,b,...) has to be
determined under the condition that it is invariant for rigid-body
rotations of the configuration of vector arguments about a given unit
vector A and for reflexions of the configuration in any point. In
other words, Q is invariant provided A and the vectors r,s, ...,
a, b, ... maintain the same relative configuration, and the condition
that (Xr,s, ...,a,b, ...) should be an axisymmetric form is identical
with the condition that Q(A, 1,8, ...,a,b, ...) should be an isotropic
form. Relaxing the symmetry conditions to permit a dependence of
the probability laws on a single direction vector is thus equivalent,
so far as the general form of Q4" is concerned, to increasing by
one the number of space vectors on which Q}]" depends (with the
slight difference that the dependence of the scalar coefficients
A,B,...on A;A;=1 is of no significance). Thus the general forms
of axisymmetric tensors of the first, second and third order which
involve velocities at two points only are:

Qi(r)=Ar+ BA,, (3-3.8)
Qur)=Ariry+ BAA;+ Coy+ Dry A+ Ery A, (3-3.9)
Qualr)=Ariryr, + BA A Ay + Cri8, + Drydy + Er 8,
+ FA 8+ GAdi + HAS 4 Iryry A+ Jryri Ay
+ K r Ay + Lri Ay A+ Mry A A+ N A A, (3.3.10)

where the scalar functions A4, B, ... are arbitrary functions of * and
r A

In the case of turbulence which has spherical symmetry but does
not have reflexional symmetry, the general form of Q includes
terms made up from additional fundamental invariants like
€@ b;7, which change sign on reflexion. The general form of
O (r,s,...) is likewise modified, and the summation in (3.3.3)
must be extended to include a number of new terms. It is not
necessary to go into the details, which are quite straightforward;
for example, (3.3.4) is unchanged and (3.3.5) is replaced by

Q)= Ar;ry+ B8+ Ce v, (3.3.11)

The case of turbulence with rotational symmetry about a given
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direction A (but without reflexional symmetry) is now obtained from
this case of spherical symmetry by permitting the dependence on
an extra vector A, just as axisymmetry can be considered as
equivalent to isotropy with an extra vector argument.

The least restrictive symmetry condition is that of symmetry
about a plane. The general forms of the tensors in this case can be
obtained from those for isotropic turbulence with a dependence on
two extra directional vectors; for instance, the expression for O, (r)
is the next member of the sequence established by (3.3.5) and
(1.3.9). Even when no symmetry conditions at all are imposed the
form of Q{ (r,s,...) is not completely arbitrary, since it must
transform as a tensor. This case of no symmetry conditions is
equivalent to the case of spherical symmetry (without reflexional
symmetry) with two extra (orthogonal) vector arguments, A and p
say, so that, on extending (3.3.11) appropriately, we find that the
most general expression for Q,(r) is
Q.f(r)=A8,;+ (3 terms like Br,r,) + (6 like Cr;A,) + (3 like De;y 1)

+ (12 like Eegyry A;ry) + (6 like Fegyry A pty), (3.3-12)
where the scalar coefficients 4, B, ... are functions of 7%, r;A; and
ro sty The relative simplicity of the expression (3.3.5) for the
corresponding isotropic tensor is considerable!

It frequently happens that the above general expressions are
simplified by the existence of symmetry in the suffixes; for instance,
u,(x)u,(x) u,(x + r)is unchanged by interchange of the suffixes s and .
The need to satisfy the continuity condition will simplify many of
the above general expressions still further. The incompressibility
relation (2.3.4) shows that Q47" (r,s,...) is solenoidal in all those
indices that are alone in referring to the velocity at one of the n
points of the configuration—for instance, uy(x)u,(x)u(x+r) is
solenoidal in k (with respect to r) but not in ¢ or j—and this condition
of vanishing divergence will require the scalar functions occurring
in the expression for O{]Y to satisfy certain differential relations.
Chandrasekhar (1950a), following Robertson (1940), has pointed
out that the process of introducing the scalar functions and then
eliminating some of them with the aid of the continuity relations
can be avoided by writing Q" , from the beginning, as the curl
(with respect to the index in which Q{}” _ is solenoidal) of another
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tensor of order m. In this way the continuity condition is satisfied
identically. Since the operation of taking the curl does not preserve
reflexional symmetry, the problem of determining the general form
of, say, an isotropic tensor of order m which is solenoidal in one
index is reduced to that of finding a suitable form (containing the
requisite number of scalar functions) of a skew-isotropic tensor of
order m. The technique is extremely useful in problems involving
complicated tensor quantities, but we shall not need to use it in this
work.

Finally, we may note that the general forms, demanded by the
various symmetry conditions, of mean values involving velocity
derivatives and of Fourier transforms of velocity-product mean
values can be obtained by making appropriate operations on the
above results, or they can be obtained directly by means of the
same procedure. The presence of a velocity derivative adds a unit
vector (specifying the direction of the derivative) to the configura-
tion on which the mean value depends, while in the case of a Fourier
transform the vector arguments r, 8, ... are replaced by the corre-
sponding wave-number vectors.

3.4. Isotropic turbulence
We consider now the very important special case of isotropic
turbulence. The velocity correlation R(r) is then an isotropic
second-order two-point tensor and therefore has the form estab-
lished in the preceding section (see (3.3.5)), viz
Ryf(x)=F(r)rery + G(r) 8y, (3.4.1)
where F and G are arbitrary scalar functions of * (and also of ¢, but
we are ignoring the dependence on time until the dynamics of the
motion are considered). The condition of isotropy has already

ensured that R,(r) is symmetrical in the two suffixes. The con-
tinuity condition (2.4.6) must also be satisfied, and we find that

?%L-r,(¢+r Eg’;’)-u

This equation is to be satisfied for all values of r and consequently

oF 10G
4F+r—+ -5 =0 (3-42)
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showing that only one scalar function is needed to specify the
velocity correlation when the turbulence is isotropic.

It is found more convenient, in connexion with experimental
work, to introduce an alternative pair of scalar functions defined by

fir)= ,(x) Ii’i(x + r). )= U, (x) u__r(z +1) ‘ 343

P Un
where u, and u, denote velocity components parallel and normal
respectively to the vector separation r (it should be noted that p and
n are not tensor suffixes, so that the summation convention does
not operate). That is, f{r) is the longitudinal velocity correlation
coefficient and g(r) is the lateral velocity correlation coefficient for
two points at distance r apart in any direction (see fig. 3.1). These

u(x +r) “ie+

uu(x)
uy(x)
w¥f(r) vig(r)
Fig. 3.1. Longitudinal and lateral velocity correlations.

two quantities can readily be measured in a wind-tunnel stream.
Their relation to the functions F and G is found from the general
form (3.4.1) to be

(%) Uy (X + 1) = r*F(r) + G(r) = u’f{r),]
Un(X) (X + 1) = G(r) = ug(r),

where u is used here and elsewhere to denote the root-mean-square
of any velocity component, i.e.

(3-4-4)

'H‘ = ;g = ;t! = im.
In terms of f and g, the relations (3.4.1) and (3.4.2) become
Rye) =t (8 rer,+g8,), (3.4:5)
g=f+¥f, (3.4.6)

where f' = 3f/ér.
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One or two general features of the functions f{r) and g(r) are
immediately evident. From (3.4.3) we find

flo)=g(0)=1,

and the general Schwarz inequality mentioned in § 2.4 shows that
this is the maximum value of f and g. Assuming that the second
derivative of f{r) at r =0 exists (which will be seen to require only
that the rate of energy dissipation by viscous forces be finite), the
behaviour in the neighbourhood of the maximum is

f(r)=1+4fs 7+ O(r).
It is common practice to introduce the length A defined by
1
fo==5
so that near the origin we have (from (3.4.6))
ré r?
ﬂr]z:—:—‘l‘, f(")"“_ji' (3-4.7)
From (3.2.2) (with r=0) the mean-square vorticity is
s u?
w0 = —(V2Ry),g= — 1545 = 1‘%‘ , (3-4.8)

and it follows from the sequence of relations of which (3.2.2) is the
first that the terms in the expansion of u*f{r) (or ug(r) or R(r)) in
powers of r? are proportional to mean energy, mean-square vorticity,
mean square of V x (V x u), etc.

As mentioned earlier we shall assume (until experimental results
reveal an inconsistency) that f decreases to zero, as r—» 0, with

sufficient rapidity to make rr"ﬁr) dr convergent for the various
0

values of m that arise in the analysis. The relation between the
moments of f{r) and g(r) is found from (3.4.6) to be

J: r"‘g(r)drn(%’—') f:r-ﬂr)dr (m30).  (3.4.9)

The lengths L -Eﬂr)dr and L, nf:g(r) dr=}L, are convenient

measures of the linear extent of the region within which velocities
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are appreciably correlated, and are known as the longitudinal and
lateral integral scales. For m=1, (3.4.9) becomes

j:'r(f)dmo:

and for m> 1 the moments of f and g have opposite signs, which
suggests that, for large values of 7, f is positive and g is negative,
(A demonstration that f{r) > o for all values of r has never been given,
but it is a very plausible result for an incompressible fluid and is
consistent with all measurements of f{r).) The rough picture of the
curves f{r) and g(r) which emerges from all these remarks is shown
in fig. 3.2; the experimental curves are found to have this same

general shape.

-
&

ﬂ’}. '{rj

Fig. 3.3. General shape of correlation curves.

Results corresponding to (3.4.1) et seq. can be established for
the spectrum tensor without difficulty. ®,(x) is an isotropic second-
order tensor which depends on a single vector argument and,
according to (3.3.5), can be expressed in the form

D, y(x) = A(x) k. + B(x) 8y, (3-4.10)

where A and B are arbitrary even functions of x. The continuity
condition (2.4.7) then requires

B=—x4,
The density in wave-number space of contributions to the total
s A 10, (%) = }(x*4 + 3B) = —x*A(x),
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and is a function of the wave-number magnitude alone. The
contribution to total energy from that part of wave-number space
between spheres of radii x and x+dx is E(x)dx (cf. (3.1.2) and
(3.1.5)), where

E(x)=4nx*. Dy (x) = — 4mxtA(x), (3-4.11)

and we shall use E(x) as the single scalar function defining ®,(x).
‘The expression (3.4.10) for the spectrum tensor becomes

@u(uJ-E( }(x‘%—m;) (3.4.12)

This may be compared with the expression (2.4.10) established for
homogeneous turbulence in general. The vorticity spectrum tensor
is found from (3.2.3) to be

2 (0)= ek (K3~ ) = D, )

The relation between the single scalar function E(x) which
determines the spectrum tensor and the function which determines
the correlation tensor is most easily obtained from the Fourier
transform relation (2.4.3) by putting 1=; and summing:

Ou()= po=gos Rl erdr. (3413
But from (3.4.5)

Ri(r)=u*(f+28)=u*(3f+1f'), =2R(r), say, (3.4.14)

whence (3.4.13) and the corresponding inverse relation obtained
from (2.4.2) become

E(x}mEJ‘:R(r}nlinxrdr.

sin xr

Re)= B o ax

The relations (3.4.15) are identical with the relations (3.1.3) and
(3.1.4) between the spectrum and correlation tensors averaged over
all directions of the vector arguments; when the turbulence is
isotropic and when the two suffixes are equalized and summed, no
directional averaging process is necessary. The direct relations

(3-4.15)
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between u*f{r) and E(x) are found from (3.4.14) and (3.4.15) to be

sin xr

E(x)-%ﬂu‘_f(r)x‘r'( L

~ CO8 xr) dr,
(3.4.16)

in Kr

w¥f(r)=2 . E(x)x-%r3 (“? - mxr) dx.‘

The longitudinal one-dimensional spectrum function (see (3.1.1))
becomes

B(x,) = O (K, 0, 0) = ;—nfuu'ﬁrl) coax,?, dr,

=[" |7 outkiku ) den,
-*;JT (: -E-!) WE*(?dx, (3.4.17)

and the corresponding explicit expression for E(x) in terms of the
measurable function ¢(«,) is

' E(r)-ﬂi[iiﬁrﬂ]' (3.4.18)

Similarly, the lateral one-dimensional spectrum function is

9!’[‘1! ﬂ, ﬂ) = ;I;f n"’g(rl)' cos l""l r.'I drl

= Ku -E w'bu("n Ky Ky) dKgdiy

R

=) - 1, . (3-4.19)

The relation between the integral moments of R(r) (or f{r)) and
derivatives of E(x) at x =0 follows from (3.4.15):

(320) el

= ? (m—1)(=1)™ H'_[:f“ﬂf} dr. (3.4.20)
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The two integral moments of f{r) not given by formula (3.4.20) are
readily found from (3.4.15):

J.:R{r)dr-u"’.:ﬂr}dr- EEr'E(x)dx (3.4.21)

and u’f:r‘ﬁr) dr= rrJ:r’E{x} dx. (3.4.22)

From (3.4.20) we find that the value of the coefficient of x* in the
expansion of E(x) in powers of x (see (3.1.12)) is

C= 5'; u? J: rAf(r) dr. (3-4-23)

In fact, we can go further and obtain, from a comparison of (3.4.12)
and the relation (3.1.9) for general homogeneous turbulence,

Cipm= f;, (810 — §8uBm — §0:m00)- (3-4.24)

The integral moments of E(x) and the derivatives of R(r) (or f{r))
at r=0 are likewise related by

I Ly R
| (3-4.25)
In particular,
. : nx‘E[x)dx
L o H, KE(K)dx = -, (3.4.26)

5 I:E(x)dx

showing how the dispersion of the energy in wave-number space
determines the radius of curvature of the correlation curves at
r=0.

The discussion of first- and third-order isotropic tensors proceeds
along similar lines, although we shall not need to go into as much
detail as in the important case of the second-order tensor. The
general form of a first-order isotropic tensor depending on a single
vector r (an example is p(x) u,(x + r)) was found to be (see (3.3.4))

Qi(r)=Ar,
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where 4 is an arbitrary even function of r. If this tensor is solenoidal
(as is p(x)u (x +1))

r oA
23445 w0,

which has no non-zero solution which makes A(r) regular at r=o.
Excluding the possibility that non-regular solutions occur in
turbulence theory, we have the important conclusion that solenoidal
isotropic vector functions of r are identically zero.

The most important example of a third-order tensor depending
on a single vector r is u/(x)u(x)u(x+r)=S4(r), for which the
general form in isotropic turbulence is (see (3.3.6))

Si(r) = Ariryn+ B(r 8y +1,84) + D, (3-4-27)

in view of the symmetry in the suffixes ¢ and j. The continuity
condition requires

aS,,(r dd 20 i
—%—2- (5A tro_+ o nnt (zB+3D+r-§r[-)) ;=0

for all values of r, so that the scalar functions 4, B, D are related by
the two equations

sA+7A'+>B =0, 2B+3D+rD’'=0.  (3.4.28)

An integral relation (which is not independent of (3.4.28)) follows
from the fact that S, (r) is a solenoidal first-order isotropic tensor
and is therefore identically zero, that is,

r?A+2B+3D=o0. (3.4-29)
From this and the second of the equations (3.4.28) we find

A-;D‘, B= ~{D~4rD’, (3-4-30)

showing that S,,(r), like R (r), is determined by a single scalar
function of r when the turbulence is isotropic.

The third-order velocity-product mean values, or ‘triple-velocity
correlations’ that are usually measured are those for which the
velocity components are either parallel or normal to r. The three
possibilities that are independent, so far as the requirement of
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isotropy alone is concerned, are shown in fig. 3.3 and are commonly
expressed in the following notation:

Wh(r) = By 7) = 41 S,y(e) = r(s*4 + 2B + D)= ~ 21D,

Wh(r) = 5(E) (% + 1) = 1! Sye) =D, :

wglr) = yX) R (X + 1) = "I S yfr) = 7B = — D 4D,
(3-4.31

where n is a unit vector normal to r. Of these three mean values,
the first is the most easily measurable (since it is easier to measure

wd® + F)
r wix +r) \/" +r) \/
. wlx) vd) o i)
vi(r) w'hr) v'q(r)

Fig. 3.3. Triple-velocity correlations,

the turbulent-velocity component parallel to the direction of the
wind-tunnel stream than to measure the lateral component, and
wk(r) is the only mean value involving velocity components in
a single direction), and we shall adopt k(r) as the single scalar
function determining the triple-velocity correlations. The expres-
sion for Sy(r) then becomes

k—rk 2k +rk k
Su(f)""[( pc )’i’f":*‘( :: )(’i*’ﬂ"‘ "j"ﬂ)“;":"ﬂ]-
(3-4.32)

The functions A, B, D are even in r, while &, A, g are odd. Further-
more, k, h, ¢ are of order * when r is small, since, if we choose r in
the direction of the x,-axis, we find
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The Fourier transform of S;,(r) defined by

Tip{xe) = EI;,IS‘,,(:) e~'*-tdr, (3.4-33)

will also have the general form (3.3.6), is symmetrical in the indices
i and j, and must satisfy the continuity condition

K; Tig(x) =o.
Consequently the expression for Y (x) in isotropic turbulence is
Tig(3¢) =4 Y(x) (kg k,— §x2 8y — §x7x;8), (3:4-34)

where T(x) is an arbitrary even scalar function of x. The relation

between the single scalar function T(x) defining Y,,(x) and the

single scalar function k(r) defining S;,(r) is most easily established

by putting ¢=/ in (3.4.32) and summing over all values of 7; we

have
2

Sude) =1 [ B+ 440 | =1KO)r, say, (3.435)

and (3.4.33) becomes
Tm{u}-l—;FJAK(r) rye—t%-tde

= “.};ﬂ. a—i UK(r) g8 d.r]

¢t o= sin K7

-;—;lﬁ;; nK(f)f" pre- df]

_ __t K [r'K)sinkr
qmixtle Or  «r

whence comparison with (3.4.34) gives

dr,

1 1 0 .
T(x)um;-“':(r—a;+ 3) K(r)xrsin krdr. (3.4.36)
The transform of this relation is

'inﬂdx.

- (3.4-37)

(r 4 +3) K(r)=8n J' " 1)



CHAPTER IV
SOME LINEAR PROBLEMS

Before examining the very difficult non-linear problem presented
by the decay of homogeneous turbulence, we shall look at some
particular problems which are tractable, The common element of
these problems is the linearity of the relations involved. This
linearity is achieved in almost every case by assuming that the
turbulent velocity is suitably small, but the approximation is not so
drastic as to rob the problems of any practical interest. In particular,
the solution of the linearized problem of the effect of passing
homogeneous turbulence through wire gauze—discussed in § 4.2—
has received strong support from experimental data.

4.1. Simple harmonic oscillator subject to a random force
There are several different physical problems that can be included
within the above heading, and we shall write down the equations
without initial reference to any particular situation. We consider
a function X(¢) of a single variaBle ¢ which satisfies the differential

equation X+ AX +70X = u(t), (4.1.1)

where X =dX/dt, A and n® are positive real constants, and u(t) is
a stationary random function of £. This is the usual equation for
the displacement of a body, the free motion of which consists
of damped simple harmonic one-dimensional oscillations with
angular frequency (n*— }A*)}, subject to a random external force
proportional to «(t). The variation of X(¢#) will likewise be random,
and the object is to determine the statistical behaviour of X(¢) in
terms of that of «(f). When u(t) is periodic in ¢ we have the well-
known resonance solution for X(#). Since the relation between
X(#) and u(?) is linear, it is clear that a stationary random variation
of u(t) will produce a similar variation of X(f) and that the method
of solution of (4.1.1) lies in resolution of u(f) and X(f) into Fourier
components in the manner of (2.5.3).
We write

u(t) =Ic"’d2(x). X(t) = |e*dW(kx), (4.1.2)
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where « is a frequency variable, and increments in the random
functions Z(x) and W(«) have the properties

(KI*K'),
Em x! K'_ - 0
dey=dry=de -0 dx
alrunu -(K 2o ) P’ = ¥,

(4-1.3)

where ®(x) and ¥(x) are the spectrum (density) functions of u(t)
and X{(t) respectively. On substituting (4.1.2) in (4.1.1), we find

(=& 418 4 ued) dW(x) = dZ(x).

The relation between the spectra of the displacement of the body
and of the impressed force is therefore

Y(6) = s O (4.1.4)

as was to be expected from resonance theory.

A quantity which is often more readily observable is the correla-
tion between the displacements of the body at two different times.
It has been shown in Chapter 11 that this correlation is simply the
Fourier transform of the spectrum function; that is,

XOXE+ = [~ Wie de

-.[:, (n'—x!;l+xt,u°("'}¢‘"dl'- (4.1.5)

We can make use of Parseval’s formulat to relate this integral to the
t See E. C. Titchmarsh, Introduction to the theory of Fourier integrals,
Oxford University Press, 1937. One form of Parseval’s formula states that if
F(x) and G(x) are functions belonging to L{— @, ®©) such that
Y S esdemPix) and [ g(x) e demGl),
the Fourier transform of the product fix).g(x) is

] lﬂx} glx) € dicm — [ Fly) G(x—y) dy.
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correlation between values of u(t) at two different times. Since

: er -L-}Mfl'(' '-11'_')
'[:_(',_ﬁﬂwe diem < eHirin (| 7| +sin1 ),

where n’ =(n? — }A?)} is the damped angular frequency of the body,

and since -
|7 0tcer ax = weyade+m) = R,
we have
XX f " Rir-petesin (-1s[+-in-l '-';') dE.

(4.1.6)
(4.1.4) and (4.1.6) are the most important of the desired relations
between the statistical parameters of X(t) and u(¢t); similar relations
for other statistical parameters can be obtained without difficulty.
Turning now to the physical significance of the problem which
we have solved, an immediate application is to the action of an
electrical band-pass filter circuit on a random input signal (Burgers,
19480). X (1) and u(f) would then represent the output and input
signal currents respectively, n the natural (undamped) frequency of
the circuit and A the inductive damping coefficient. The important
relation in this case is (4.1.4), which shows how the portion of the
input spectrum passed by the filter circuit depends on the charac-
teristics of the circuit. When the damping is sufficiently small the
circuit is sharply tuned to the resonant frequency n and a measure-
ment of X¥ = |  ¥(x)dxis in effect a measurement of ®(n). Thus

by adjusting n it is possible to measure the whole of the spectrum
function of the input signal u(t). This is the practical method of
determinatior of the spectrum of the turbulent velocity recorded
by a hot-wire anemometer in a wind-tunnel stream. It is also used
for the analysis of electrical and acoustic ‘noise’.

Another application of the mathematical analysis is to the motion
of a body subject to a restoring force proportional to its displacement
from a position of equilibrium and immersed in a fluid which is in
statistically steady turbulent motion. The motion of a pendulum
swinging in a turbulent fluid (Lin, 1943), or the motion of a buoyant
balloon tethered to a fixed point in a turbulent wind, are examples of
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this kind. The quantity u(t) is here the hydrodynamic force on the
body produced by the turbulence, and if we wish to identify u(z)
with the turbulent velocity (apart from a constant factor)—as of
course we must do for consistency if — AX is intended to represent
hydrodynamic damping of the system—we must make further
assumptions. In cases in which the fluid has zero mean velocity
relative to the body the assumption is that u— X is small enough
for Stokes’s law of viscous resistance to be valid. In cases in which
the fluid has a finite steady mean velocity relative to the body, the
required condition is that the forces due to the turbulent motion
should be a perturbation only (whatever the dependence of force
on velocity), that is, that the turbulent velocity ¥(f) should be small
compared with the mean wind speed. In all cases the linear dimen-
sions of the body should be small compared with the length charac-
teristic of the turbulent motion in order that it should be possible to
speak of the velocity of the body through the fluid in its immediate
neighbourhood. Also it should be noted that R(7) cannot be identi-
fied with the correlation of the turbulent velocity at two different
times at a fixed point, unless it is also assumed that the displacement
of the body is always small compared with the length characteristic
of the energy-containing eddies of the turbulence.

4-2. Passage of a turbulent stream through wire gauze

In this and the subsequent section of this chapter, the problem
under discussion is linearized by the assumption that the field of
turbulence responds to some external effect very rapidly—so
rapidly that the inertia and viscous forces acting on the fluid produce
a negligible change only in the distribution of velocity. The response
to the external effect (which must itself be linear, of course) is thus
assumed to take place within a time which is small compared with
a time representative of the decay of the turbulence (say, the time
required for the energy to be reduced by half). In such problems we
are virtually concerned with the spatial distribution of velocity only.
Two or three problems which have some practical usefulness have
been solved on this semi-kinematical basis.

The first to be considered is the determination of the effect of
translating a field of homogeneous turbulence at a uniform speed U
perpendicularly through a plane sheet of wire gauze. This is a
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problem which arises from the long-established practical use of wire
gauzes to damp out disturbances in a wind-tunnel stream (see
Dryden and Schubauer, 1947). Details of the construction of the
gauze are unimportant for our purpose, except inasmuch as they
affect the values of two parameters to be defined below, and we can
regard the gauze as a continuous sheet which introduces no length
parameter into the problem (as is approximately true in practice
when the distance between neighbouring wires of the gauze is
sufficiently small). The history of the turbulent velocity at a point
moving with the mean stream is then as follows. Far upstream and
far downstream of the gauze the velocity field is assumed to be
experiencing no change with time (except translation). While the
point is in the neighbourhood of the gauze the velocity changes, as
the point moves, in a manner demanded by the presence of the
gauze and the local velocity distribution. By the phrase ‘in the
neighbourhood of the gauze’, we mean within a distance from the
gauze comparable with a length [ characteristic of the energy-
containing eddies of the turbulence, since this defines the distance
over which turbulent velocities are statistically related. The
assumption on which the linearization is based is thus that negligible
decay of the turbulence occurs while the field of turbulence is
translated through the region of influence of the gauze, that is,
while the point moving with the mean flow covers a distance of
order /; expressed analytically, we require the condition

1 du?

ﬁ‘% 4-1[{ (4.2.1)
to be satisfied.

We shall see later that this condition is satisfied when the
turbulence has been generated by forcing the stream through a grid
of bars at velocity U, which is by far the most important practical
case. For in such cases it is foundt that du¥/dt is of the order of
(u¥)}/l (during the important period of the decay), so that the
condition becomes (@)

T £1. (4.2.2)

The value of (u¥)}/ U varies with the time of decay of the turbulence,
but is at least as small as o-1 before the turbulence generated by

t See Appendix to § 6.1.
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the grid has become homogeneous, and becomes less thereafter.
The turbulence is essentially a small disturbance of the uniform
stream U.

The two parameters which are assumed to specify the gauze (so
far as its action on the turbulence is concerned) are, first, the
resistance coefficient A(#) defined by

P12 =k0).4pV7, (4.2.3)
where p, and p, are the pressures in front of and behind the gauze
when a uniform stream of speed V' (upstream of the gauze) flows

through it at an angle @ to the normal to the plane of the gauze, and,
second, the deflexion coefficient a(f) defined by

¢ =0a(0), (4'1'4)

where # and ¢ are the angles between the normal to the gauze and
the directions (assumed coplanar with the normal) of the uniform
stream entering and leaving the gauze. These two coefficients
describe the forces exerted by the gauze normal and parallel to its
plane respectively. We shall assume that when turbulent fluctuations
are superimposed on the uniform stream, the instantaneous pressure
drop and deflexion at each point of the wire are given by (4.2.3) and
(4.2.4) with local instantaneous values of V' and @ inserted on the
right sides of these equations. In accordance with our basic
assumption (4.2.2), we are concerned with small values of 6 only,
and since A(f) and «(f) are necessarily stationary at & =0, we shall
regard k and « as independent of . There is some experimental
evidence (Schubauer, Spangenberg and Klebanoff, 1950) to show
that the approximate empirical relation

o= [x +hfoJl*

holds for gauzes of different construction and streams of different
speeds; this will simplify our conclusions about the effect of an
arbitrary gauze on the turbulence.

We shall represent the turbulent velocity far upstream of the
gauze by u' and that far downstream by u”. If the origin of the
spatial coordinate system is in the plane of the gauze, with the
positive x,-axis directed downstream, u’ and u” are functions of

— Ut, x4 and x,, where U is the velocity of the stream carrying the

(4.2.5)
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turbulence. The transition from the velocity distribution u’ to the
distribution u” takes place wholly in the neighbourhood of the
gauze, partly upstream from the gauze, partly downstream and
partly as a discontinuous change across the plane of the gauze.
Our basic assumption is that the intensity of the turbulence is too
small to permit inertia and viscous forces to change the velocity
distribution while it is being transported through the region of
influence of the gauze; consequently the modification to the velocity
distribution which takes place in the neighbourhood of the gauze
(except across the gauze itself) must be due entirely to the distribu-
tion of pressure drop across the gauze and must therefore be
irrotational. Hence, on the upstream side of the gauze, we have

u(x, t) =u'(x; - Ut, x,, ) + V§'(x, 1), | (4.2.6)
where ¢’ is a potential function which approaches a constant value
as x, -+ —o0, and on the downstream side

u(x, £) = u"(x, — Ut, x5, x) + V" (x, 1), (4-2.7)
where ¢" approaches a constant value as x,—>00. ¢’ and ¢" are
determined by the pressure-drop equation (4.2.3), which provides
the necessary boundary condition at the plane x, =o. For, consistent
with our basic assumption, the equations of motion near the gauze
on the upstream and downstream sides are

p(5+Us) ¥ =2 (4.28)

o 0
and p(5+Uzg) "= -p-h1oU? (4.2.9)

(the term — k. }pU? represents the level of the pressure at x = + ),
and if these equations are taken at x, = —o and x, = + o respectively
and are subtracted, we have as the joint boundary condition on ¢
and ¢*

v 00

=AU+ w4 - U
SRV )aea=RU (114 35)

=0
(4.2.10)
where the suffix 1 denotes a component normal to the gauze.
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The modification to the velocity distribution across the plane of
the gauze is seen from (4.2.4) to be given by

(M)zimso = WUg)gim0r  (Ma)gymso = A(Ug)gimo  (4.2.11)

The conservation of mass prohibits any discontinuity in the com-
ponent u;, so that

(1) 2y 40 = (#1) 2,m—0- (4.2.12)

These conditions are sufficient to relate the statistical charac-
teristics of u’ and u” and so to determine the effect of the gauze on
the turbulence passing through it. We make a Fourier resolution
of the velocity field, in the manner of (2.5.3), and, in virtue of the
linearity of the above equations, may consider the effect of the
gauze on a single Fourier component in isolation, We write

l“: (2, = Ut, x4, 25) -Ie'“""'"”dlil (x), (4.2.13)

and, since ¢’ and ¢ are stationary random functions of x, and x,,
!i: (x, 1) ufe-t:.=.+ €y Ty d‘i: (xqy Kg, X4, ). (4.2.14)

Now ¢’ and ¢ are potential functions, so that
il A’
(") elaee
where r*=«} + &}, and
dA'(xg, k5, %5, £) o €™, dA"(Ky, Ky, %, 1) € €751, (4.2.15)

Moreover, ¢' and ¢” are stationary random functions of ¢£. Hence
we can express ¢’ and ¢° in terms of new Fourier coefficients
dI™(x) and dI™(x):

#(x, )= [ermceie-x-atndr (e,
s (.‘..I " | 6}

¢-(I, f] -~ J‘e-—r:,-lrlh' 2=, U4 P'{I].‘

where 7 is the vector component of x in the plane of the gauze.
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Substituting these integrals in the equations (4.2.10), (4.2.11) and
(4.2.12), we find for the general Fourier coefficient the relations

(—xy=7)dl ~(~ ey +7)dIV =k(dZ] + 7dI"), (4.2.17)

dZ; + ey dIM™ = a(dZ; + uey dI™), (4.2.18)
dZ; + iy dI™ = a(dZ; + wcydl™), (4-2.19)
dZ; —7dl" =dZ; +rdI", (4.2.20)
respectively. Together with the continuity condition
%.dZ'=x.dZ" =0, (4.2.21)

the above equations are sufficient to determine the five unknown
quantities dZ", dI'" and dI'™", in terms of dZ’ and the parameters &
and a. The solution for dZ" is readily found to be

azy) =2 AL LA=1 =N 470 =108). 02100, say,

(B-0)[28+k+1 +n:)]
(4.2.22)
dZ3(x) = ad Zy(x) + dl‘;, (@ —J(A)dZ:(x), (4.2.23)
4Z3(x) =adZi(x) + 5705 [« = J(A)) 4Z3(x) (4-2.24)

where f=x,/r=x,/(x}+«}} is a measure of the angle which the
wave-number vector makes with the normal to the plane of the
gauze. The solution may also be written concisely as

AZ3(w) = adZi) + (S W) () - 21 Z, (4225)
3

from which the effect of the gauze on any statistical characteristics

of the turbulence may be evaluated.

There is great practical interest in the amount of turbulent energy
suppressed by the wire gauze, so that we consider the relation
between the spectrum tensors of the turbulence far upstream and
far downstream from the gauze. The relation between the spectrum
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function ®,(x) and the increment dZ(x) is given by (2.5.5), and,
with an obvious notation, (4.2.25) yields the result

0} ) =2 0) + USRI ELU =) 70 — 007,00

Aol S
oS5 o-o fou- ). s

In particular, we are interested in the reduction in the contributions
to the energy of the velocity components normal ahd parallel to the
gauze, Far downstream the spectrum densities, at wave-number x,
of the energy in the longitudinal and lateral motions are

©a(3) =JT*Pyy(x)s (4-2.27)
Dja(x) + Dig(x) =a¥ Py + O3g) + ) * ~a") Py, (4.2.28)

respectively, and consequently the factors giving the reduction in
the total energy of the longitudinal and lateral velocity components

are
o [1reie0 o
p b , (4.2.29)
o I‘Dil(“}d"
v PYT* —a?) Diy(x) dx
r-g::{‘-u‘-&’l‘ - (4.2.30)

J‘(tb;.+0;.)dn
From the definition of J(f) (see (4.2.22)) we have
Bt —at) = ak—1—af~Hh+14a) ]]*,

so that v=a'+}{(ak~1—a)—(k+1 +a}'p]%. (4.2.31)
giving v as a function of # and the directional distribution of energy
in the turbulence far upstream. The integrals in (4.2.29) can be
evaluated when the spectrum of the turbulence approaching the
gauze is known,
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The special case in which the turbulence far upstream is isotropic

is important, and the integrals are then very simple. We have seen

that in this case
, KX

@d‘)“:ﬂj’%(ﬂu-x‘x’).

and the reduction factor (4.2.29) becomes
[ B 1yvan

= f Ef) o
TRy

J is a function of § (=x,/(x}+x§)!) only, so that if the volume
integration is carried out in terms of spherical polar coordinates,
the integration with respect to x cancels, giving a value for x which
is independent of the form of the function E(x). We find

["a+rmrrigeas
) " armmrap

-gj:(l +ﬂ')"|4:?:(ff_::_;:;)ldﬂ, (4.2.32)

and from (4.2.31) the reduction in lateral energy is
ve=at4 fak—1—a) - ju(k+1+a) (4-2.33)

The difference in the values of z and v is a reflexion of the obvious
result that the turbulence is not isotropic after passing through the
gauze, and is axially symmetrical about the normal to the gauze.
Numerical values of the factors u and v for various values of k are
shown in fig. 4.1, where it has been assumed that the relation
(4.2.5) between a and & is valid.

The effect of the gauze on other parameters of the turbulence
can be calculated. An interesting result is obtained by putting
xy =0 in the expressions (4.2.22), (4.2.23) and (4.2.24) for the effect
of the gauze on the general Fourier coefficient, viz.
1+a—ak

1+a+k

dZi(o, kg, k) = -dZ (0, kg, Ky), (4-2.34)

d{g(ﬂ. I‘-.K.) =ad {zZ(‘n'r K ‘l)' (4‘235)
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These equations describe the effect of the gauze on a disturbance
which, far upstream, has no variation in the x,-direction, that is, one
which, in isolation, is ‘steady’ in the sense that there is no change
in the velocity at a fixed point as the disturbance field is carried
downstream. The effects of the gauze on the longitudinal and
lateral velocity components are here independent, the reduction in

10

o)
o2

o4

Fig. 4.1. Reduction in energy of longitudinal and lateral components
of velocity (from Townsend, 1951a).

the lateral components being the same as that for any steady flow
which is inclined to the normal to the gauze. The expression (4.2.34)
admits the interesting possibility that the longitudinal component
is entirely suppressed by a gauze such that

k=14+al,

which corresponds to k= 2-8 if a and k are related as in (4.2.5). For
larger values of & the longitudinal velocity is reversed in sign and
also reduced in magnitude. The longitudinal component of the
velocity for other wave-numbers is not suppressed when k=2-8,
but nevertheless it will be noticed from fig. 4.1 that x has a shallow
minimum for a value of k between 3 and 4.
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The above theory of the effect of wire gauze has been submitted
to experimental test and its approximate general validity has been
established. For details of some measurements of the reduction
of a steady disturbance, the paper by Taylor and Batchelor (1949),
in which the theory was first presented, may be consulted; further
measurements of the same kind have been described by Schubauer,

Theory

* & M=508cm
+ M2 em

3
1 ] |
0 1 2 3
Fig. 4.2. Reduction in energy of longitudinal component immedistely
upstream from gauze (from Townsend, 19514).
Spangenberg and Klebanoff (1950). Townsend (1951 @) has recently
published an account of extensive measurements of the effect of
gauze on isotropic turbulence, and his measured values of 4 and »
are reproduced in fig. 4.1. The principal defect of the theory, as
revealed by comparison with the measurements shown in this figure,
is that it predicts too great a degree of anisotropy downstream from
the gauze. Townsend has shown that the reduction in total energy
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(i.e. #+ 2v) is predicted quite accurately by the theory (as can be
seen from fig. 4.1), and he has also established that the value of u}
immediately upstream from the gauze (i.e. at x, = —0) is given to
a good approximation by the theory, as shown in fig. 4.2. It appears
that in the neighbourhood of the gauze, on the downstream side,
there is a strong tendency to isotropy which leaves the total energy
unchanged. Like all other manifestations of inertia forces in the
turbulence, this tendency to isotropy is not taken into account in
the theory, and to this extent the theory is in error. It is possible
that this tendency to isotropy, which seems to act chiefly in
the downstream neighbourhood of the gauze, arises from the
discontinuous change in the triple-velocity correlation which
occurs at the gauze.

4.3. Effect of sudden distortion of a turbulent stream

Another problem which arises from wind-tunnel practice is the
effect of passing a turbulent stream along a pipe in which there is
a sudden change in cross-section. It has been known empirically
for many years that a sharp contraction in area of the pipe, with
consequent acceleration of the stream, produces a substantial
decrease in the kinetic energy of the turbulence relative to that of
the stream. By placing very large contractions, or throats, at a short
distance upstream from the working section of a wind tunnel, the
designer is able to obtain a stream from which undesirable turbulent
fluctuations have been almost wholly eliminated. A qualitative
explanation of the effect was first given by Prandtl} from a considera-
tion of the effect on steady disturbances (that is, those which have
no variation with position in the direction of the stream).

Provided we can assume that the distortion of the stream takes
place so rapidly that inertia and viscous forces arising from the
turbulent motion have no effect, the problem becomes linear, as
was shown first by G. 1. Taylor (19355). On this basis the problem
can be solved in much the same way as that considered in the
previous section. We imagine that in the regions upstream and
downstream of the distorting section of the pipe the mean flow is
uniform and the turbulence is homogeneous. The way in which

t L. Prandtl, Handbuch der Experimentalphysik, Leipzig, 1933, 4, part 3, 73.
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the change in the turbulence occurs during the process of distor-
tion is irrelevant to the linearized theory; only the initial and final
states concern us. The condition on which turbulent inertia and
viscous forces can be ignored during the process of distortion of the
stream is 1da U

D dr < D’ (4-3.1)

where U is the speed of the stream and D is the length, in the stream
direction, of the distorting section of the pipe. Making use again
of the known result that du?/dt is of the order of (u¥)}/l, where /is
the length scale of the turbulence, we require

ah
(—'1,_,,-1-4 B (4-3-2)

(u?)} is always small compared with U, but //D is usually small also,
and cases in which (4.3.2) is satisfied will be the exception rather
than the rule. The results obtained below are therefore less useful
than those of the preceding section.

The linearized problem may be solved by considering the way
in which the vorticity of the turbulent motion is changed and
redistributed by the distortion of the stream. To this end we use
a Lagrangian specification of the motion, and let u'(a) and w'(a) be
the velocity and vorticity associated with the fluid element which
has position a in the field of turbulence upstream of the distortion,
relative to axes moving with the mean velocity. In the field of
turbulence downstream of the distortion, this same fluid element
has position x and the corresponding velocity and vorticity are
u“(x) and w"(x), relative to axes moving with the new mean
velocity. In the absence of viscous forces the final vorticity w"(x)
is determined entirely by the change in relative position of the fluid

particles, and is given by Cauchy’s equationt

wﬂl}-gﬂfw}{-h (4-3.3)
that is, € W—‘E Eﬁy' (4-3-4)

t See H. Lamb, Hydrodynamics, Oxford University Press, 6th ed., chsp. 7.
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We now make the assumption that 8x,/3a, is a constant, inde-
pendent of a. This assumption implies, in accordance with our basic
hypothesis, that the strain experienced by any fluid element during
the distortion process does not depend on the turbulent motion.
It also contains the approximation that the contribution to the
strain from the passage of the fluid element through the distribution
of mean velocity in the distorting section is the same for all fluid
particles; this is certainly not exactly true, in general, but it will
be asufficiently good approximation when the scale of the turbulence
is small compared with the tunnel width. The strain imposed by
the distortion and described by the tensor 9x,/0a, is thus homo-
geneous. On this basis, the operation of taking the curl (with
respect of x) of both sides of (4.3.4) gives

o(x Ox; 3 [Oug(a)
€rai€ipg x’a:--arlt‘.fﬂa"a: a" ];
but ‘hﬁn-aﬂaq"aﬂ " (4.3.5)
and hence -V}ﬂ:(l)-amemg::g::;:'{azz. (4.3.6)

The statistical characteristics of the turbulence fields existing
before and after the distortion may be related with the aid of this
equation. We make Fourier resolutions of the velocity distributions:

w(m)=[exrdZ’), wio)= [errdZ(),  (43)

and find from (4.3.6) that the components of dZ"(yx), where ¥ is
the wave-number vector such that

X.X=x.8, ie, xi-x,g: . (4.3.8)

are related to those of dZ'(x) by the equation
A AZ: () = - a,,s,..:,g:x, dZyx).  (43.9)

As in the problem of the preceding section, practical interest is
concentrated chiefly on the change in the spectrum tensor of the
turbulence. The expression for ®7,(x) in terms of @y (x) follows
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immediately from (4.3.9), and is given by

axl ad, a‘u ad‘

“rei®1p0 3g, 3, ™ Vb 3g_3x,.
=)

¢"4 9x, 0x,

&y (x)dy = Ky Ky Ky Ky Do () die.

(4.3.10)
The case in which dx,/2a, represents a pure strain is almost the only
one of any importance for wind-tunnel practice, and the analysis
will be restricted accordingly. With the principal axes of the pure
strain as axes of reference, and with ¢, —1, ¢;—1, ,—1 as the
principal extensions, the components of the strain tensor become

0x, Ox, 0%, ox, TP,
=y, T mey, =— =0, =z—=0 if %]
da,” " 3a, ¥ Ba, * O 4

while those of the reciprocal strain tensor are

doyp 2 ey 1 D8t O

ox, e’ Ox, e’ Oxy e Ox

where e,e,e4=1 in order to satisfy the continuity equation.
Equation (4.3.9) now becomes

=0 if 14j,

Ky

I K " K, '
AZi0) = - 4Zi) - ;55| i )+;-;dz.(u)+,—;d2.(:=)! |
4.3.11

with two similar equations, and the diagonal components (which,
in view of the continuity equation, are sufficient to determine all
components) of ®7,(x) are given by

W00~ 5000+ | (F+3) (5 -5 +<(e-3) |oneo
+ 2 (eh—eD) (<t b+ ) 03

A (ardasalo .
+ v (d+ e+ ad) a6, (4312

with two similar equations, where the components of y are /e,
Kqleg and xyfe,.



72 THEORY OF HOMOGENEOUS TURBULENCE

When the turbulence is isotropic before distortion occurs, we
have

000 = o +aD). Ol =etc,

and in this case (4.3.12) becomes, after some reduction,

%00 a5+ D)+ (D) ] @

Likewise the spectrum of total energy in this case is

V)= e eled + ) el )+ el D). (8314

The reduction in the energy of each velocity component owing to
the distortion can now be found by integrating over all wave-
numbers.

The formulae for general values of ¢,, e, and ¢y involve complicated
integrals, but become simple if e, =¢, e, =¢,=1//c; this case has
some practical importance since it represents the effect of a sym-
metrical contraction, which is usually present in wind tunnels of
circular or square section. Equation (4.3.13) and the sum of its two
partners then reduce to

() = E‘x’.m D), (4.3.15)

Va0 + 0= i (0 + ). (4316

where ¥*=x3/c*+ c(x}+«}). The ratio of the values of the energy
of the longitudinal velocity component (i.e. along the axis of
symmetry) after and before the distortion is

o Joumax [mtHe
Pﬁfj@ () de J'E(x) K+
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In terms of polar coordinates x, 6, where
ky=xcosf, (x}+at=xsinb,
v sin®f 46
o (c"*cos? @ + csin*6)*

J‘ sin*@ df

4‘.[: +=r.' 1+a r']. (43.19)

where a=1—c*, The ratio of the values of the energy of the
htuilvelodtymmponentll.ftﬁmd before distortion is

s (@300 + (0] dx
TR [0+ 0300] dx

o

g

J’ [1 4 c-4cos? B(c- cos 0.+ csin®0)y] sin § 4O

p=

I [1 + cos?8]sin 6 d6

-;'f $3c0 [ui log - t: (4.3.18)

muﬁoofﬂnnluuohhewmmmuhhctmbum
before and after distortion is, from (4.3.17) and (4.3.18),

1+a
e )4 o

=S+ (- Hogd (14 (1) (43.19)

Numerical values of # and » for a symmetrical contraction of
isotropic turbulence, as given by (4.3.17) and (4.3.18), are shown
in fig. 4.3. It will be noticed that the energy of the lateral com-
ponents increases (for ¢> 1), while that of the longitudinal com-
ponent decreases, as expected from Prandtl's original argument
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that vortices parallel to the x,-axis are extended and strengthened
while vortices directed across the axis of symmetry are weakened.
The change in the lateral energy dominates the total energy of
the turbulence, which is always increased by the contraction of the
stream. However, the energy of the turbulence relative to that of
the stream transporting it—which is the significant quantity so far
as the effect of turbulence as an aerodynamic disturbance is con-
cerned—is altered by the factors u/c* and »/c%, and hence both
longitudinal and lateral relative energies are considerably reduced.

" I

3 4 5 é ?
€ = CONLraCtion rate

Fig. 4.3. Effect of a symmetrical contraction on isotropic turbulence.

The contraction ratio ¢ will normally be large compared with
unity, and expansions of the expressions for 4 and v in powers of
¢~? are useful. For most purposes the approximation

p=3c(log4c*~1), v=jc, (4.3.20)
will be sufficient. These asymptotic expressions for 4 and v are
substantially different from the expressions given by Prandtl for
a ‘steady’ disturbance,t viz.

p=ct v=c, (4.3.21)
t A steady disturbance, humdmmhnu,hnrmmtmth

a wave-number such that x,=0; putting x,mo0, &;=e;=c-}, in (4.3.11) and the
two similar equations and using the continuity condition, we find

4Zi(0, ey, b =2 4Zi(0, k), 472 (0, b, e =cbd( T, w0
in sgreement with (4.3.21).
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which have often been used to predict the turbulence changes in
wind tunnels in lieu of a more accurate theory.

As mentioned earlier in the section, not many of the contractions
used in wind tunnels will be sufficiently rapid to satisfy the
criterion (4.3.2) for the linearized theory to be applicable. No
accounts of measurements of turbulent-velocity fluctuations made
on both the upstream and downstream sides of a sudden distortion
appear to have been published, so that it is not yet possible to test
the soundness of the theory. The theory is of interest for its own
sake as a demonstration of how completely—and easily—a problem
of turbulent motion may be solved when the relevant equations are
linear.



CHAPTER Y

THE GENERAL DYNAMICS OF DECAY

Chapters 11 and 111 were concerned with the mathematical equip-
ment needed to represent the turbulent motion at one instant in
a statistical manner, taking into account the continuity condition
and any symmetry conditions which may exist. The essence of our
problem is to determine the variation of this statistical representa-
tion with the passage of time. In this chapter we shall consider the
general method of going about the problem and shall investigate
some properties of the decay that follow immediately from the
dynamical equations. These exact deductions, which are severely
limited in scope, will be supplemented in later chapters with
intuitive hypotheses about the nature of the decay.

5.x. Methods of using the Navier-Stokes equation

The equation governing the variation of the spatial distribution
of the velocity with time is the Navier-Stokes equation

%@-—u.?u-%’?ﬁ-}-vﬁ'ﬂ; (5.1.1)

There appear to be two distinct courses open to us in making use of
this equation in an investigation of turbulent motion, the first being
as follows.

Equation (5.1.1) can be regarded as determining the distribution
of velocity over all space at time ¢ in terms of the distribution over
space at some initial instant #,. In other words (5.1.1) determines the
development, with time, of each realization of the turbulent field.
Provided that the solution of (5.1.1) can be obtained explicitly, the
value of any statistical quantity at time f can then be obtained by
averaging (the appropriate function of) this explicit solution for u
over the whole ensemble of realized fields, that is, over the ensemble
of initial spatial distributions of u.

The success of this direct approach evidently depends on the
possibility of being able to solve the equation (5.1.1) explicitly. If
the initial conditions are given numerically (as against being given
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in probability) it is of course possible to solve (5.1.1) for a realized
field by a numerical step-by-step integration with respect to £.
Such a procedure is very laborious and, from a theoretical point of
view, seems unlikely to reveal the fundamental features of a
statistical problem. Nevertheless, the lack (as yet) of a wholly
successful alternative method may make it worth while to use
direct calculation of realized fields in one or two sample cases to
provide a guidé to the solution of the problem. There are ways in
which the labour required may be reduced. For instance, if the
calculation is carried out for a large region of a single realized
field, it may be possible to compute averages of the required
quantities over space and to use ergodic theory to relate these space
averages to probability averages. A first attempt at a solution along
these lines has been made by H. W. Emmons (1947) for the
hypothetical case of a two-dimensional turbulent flow between two
fixed parallel planes, the initial spatial distribution of velocity being
chosen to have arbitrary fluctuations superposed on the expected
distribution of mean velocity.

A solution of (5.1.1) in closed form has not yet been found, but
it is possible by an iteration process to mmput: u(x, t) as a Taylor’s
series in f — f, (assuming it to exist), 1

u(x, 1) =u(x, to) + (1 — t.)[ :L z!( =to)* a.‘;(::’t)

(5.1. i}
in which the coefficients are functions of u(x, t,) (and its derivatives
with respect to x) only. The coefficient of the term of first degree is
given by (5.1.1) directly. The pressure p occurs in (5.1.1) but may
be eliminated with the aid of the equation obtained by taking the
divergence of (5.1.1), viz.

Tor, . _ Dty
SV s (5-1.3)
in an infinite fluid only the particular solution of (5.1.3) is relevant,
so that ”
Wﬂ,
P( )-w dx; 0x; [x" —x|’ (5.1.4)
The next coe&'lumt is

(%)f.-(—%ﬁn—u.?? vgf+ v'a,) . (5.1.5)
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By eliminating p and du/dt with the aid of (5.1.4) and (5.1.1)
respectively, the right side of (5.1.5) can thus be expressed in terms
of wu(x,t,) and its derivatives with respect to x, and a similar
procedure is capable of determining the general derivative

™u
(&),
It will be noted that the coefficient of (t —1,)" in the power series
contains terms of the rth degree of u(x, ), where r takes all values
from 1 to n+ 1.

Consequently if the initial conditions are given in probability—
that is, if the joint-probability distribution of u(x, t,) at any n values
of x is given, for any value of n—the power-series solution (5.1.2)
can be used to determine the mean value of any required function
of the velocity at time ¢. For instance, an m-order velocity-product
mean value at time f is determined as a power series in £ — £, the
coefficient of the term of zero degree being an m-order product
mean value at time f, and succeeding coefficients being product
mean values of m and higher orders. In general this direct method
is not of much practical value, on account of the great complexity of
all but the first two or three terms of the series. Its value lies perhaps
in the direct demonstration that the accuracy with which the value
of an m-order product mean value at time £ can be calculated depends
on the number of product mean values of different order which are
known at time t,; for values of ¢~ ¢, small enough for a linear
approximation to be adequate the values of m- and (m+ 1)-order
mean values at time ¢, are sufficient to determine accurately the
m-order mean value at time ¢, while for slightly larger values of
t -1, a knowledge of (m + 2)-order mean values at time £, is needed
also, and so on. The greater the value of t—¢, the more of the
complete probability distribution of u(x, #,) must we know in order
to calculate any mean value at time £.1

The second method of making use of equation (5.1.1) is to
convert it into a set of equations for the variation of statistical
quantities with time. This is done by making some suitable operation

t This conclusion points firmly to the need for & method of specifying the
complete probability distribution of u(x, #,) (as a random function of x) in & form

which would allow an sttempt to determine, from (5.1.1), its time dependence
as &8 whole, and not as a collection of mean values.
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on the equation in order to get a time differential of the required
quantity on the left side and then taking a probability average of
both sides. The resulting equations, one for each of the infinite
number of quantities required to specify the velocity field com-
pletely in the statistical sense, are then to be solved in terms of
the statistical specification of the turbulence at the initial instant #,.
As with the other method of using the dynamical equation, we are
particularly interested in obtaining a solution for general initial
conditions in order that an approach to a statistical state partially
independent of the initial conditions may (if it exists) be investigated.

This plan of averaging the differential equations is the one that
has generally been adopted in past research. We can illustrate the
procedure by formulating the equation for time variation of the
velocity correlation Ry(r, ). If u’ and p’ denote the velocity and
pressure at the point X’ =x +r, the Navier-Stokes equations at the
points x and x’ can be written as

3“‘ 3;;:' ;::Hv' (5.1.6)

E aﬂf‘l‘ Iap V'ﬂ;

ot 3: k a#

On multiplying the first of these equations by u; and the second by
u, and adding the two, we obtain the time rate of change of w,uj, of
which the probability average is
duguy ( Ouju uy E'&) _(u‘5+733
ot “ox, T 0x, ax; " ax
ek v(“i ::"'; + "f :l"i)' (5*1'3)
The operations of differentiation and taking an average permute;

u, is independent of x’, so that u a;""‘ a“';’ *, and similarly
k Xk

for other terms; and lastly, 9/0x, and 2/0x; can be replaced by
—9/dr, and 3/dr, respectively when they operate on a two-point
mean value. With all these aids, (5.1.8) becomes

(5.1.7)

R (r,t) . —n 1 (Opu; 8p'u,
£ o7 Gy~ + 5 (59 -5 )+=~WR,,((:. ?;;
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where V* now has the meaning of 9%/(9r,9r;). The right side of
(5.1.9) can be written entirely in terms of velocity-product mean
values, since we have, from (5.1.4),

I— 1 1 Puuu,
o ) x| ax;a;:"’"
__!_ 1 aﬂu,uj
4n)|r—8s| 05,01, = B,

where uj is the velocity at the point x* =x’ ~ 8, and the integration
is over all s-space; a similar expression can be found for ;:;;'I‘

The plan is now to solve this dynamical equation for Ry(r, t), for
given values of R, as a function of r (preferably expressed in general
form) at some initial instant #,, A difficulty in principle is imme-
diately evident from the form of (5.1.9). The right side contains
velocity-product mean values other than R.(r, ), so that by itself
the equation is insufficient to determine R (r, t). This situation has
of course been brought about by the non-linearity of the Navier-
Stokes equation. The nature of the difficulties created by the
non-linearity has been changed by the operation of taking an
average of the equation; whereas we were originally faced with
a non-linear integro-differential equation (5.1.1) in a single depen-
dent variable u(x, ¢) (after p had been eliminated with the aid of the
continuity equation), we now have a set of simultaneous linear
integro-differential equations (of which that for R(r,?), viz.
(5.1.9), is typical) for the velocity-product mean values.

The essence of the difficulty with this second method of attack is
that we do not know how to get a sufficient set of simultaneous
equations for the velocity-product mean values. If we form the
dynamical equation for the third-order three-point product mean
value u,wju;, a special case of which occurs on the right side of
(5.1.9), we find that it contains fourth-order product mean values.
A continuation of this process leads merely to an infinite set of
equations, the number of equations being always one fewer than the
number of dependent variables. The explanation of the position
appears to be that the product mean values contribute less and
less information to the complete probability distribution as their
order increases, so that the set of equations becomes complete
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asymptotically. Product mean values of high order correspond to
integral moments of the probability distribution function of high
order, and although an infinite number of such moments is needed
to determine the distribution exactly, we obtain an increasingly
good approximation to it by specifying a larger and larger number
of the integral moments. We could represent the turbulence
statistically to a good approximation by a large but finite number N
of velocity-product mean values, and a set of dynamical equations
(like that described above), one for each of the N product mean
values, would then be sufficient—with certain restrictions on the
accuracy—to determine the development with time, since we should
be at liberty to choose an arbitrary value (at all values of f) for the
(N + 1)-order product mean value which occurs in the last equation
of the set.t This arbitrary choice of the (/V+ 1)-order product
mean will have an immediate effect on the rate of change of the
N-order mean, and will affect lower order means at successively
later times; consequently accurate calculation of the development
of the turbulence with time is possible for a time interval which is
greater, the greater is the number of product mean values which
are given at the initial instant.

It is now clear that there is no essential difference between, on the
one hand, the above procedure of averaging the dynamical equation
for the various velocity products, and, on the other hand, the
procedure described earlier of obtaining the solution of the
Navier-Stokes equation as a power series in ¢ 1, and averaging
the appropriate function of this series solution. In both cases
the time-development of a partial statistical representation of the
turbulence can be calculated over a time interval which increases
with the completeness of the statistical representation. T'wo mathe-
matical contributions (possibly unattainable) would greatly increase
our ability to analyse the decay of the turbulence. One is the
deduction of a general solution of the Navier-Stokes equation

4+ An equivalent and perhaps better plan would be to assume that for all values
of t the (N + 1)-order product mean is the same function of lower order product
means as for an arbitrarily chosen probability distribution. M. Millionshtchikov
(19414a), in a special context, made the convenient assumption (which may also
be accurate, see § 8.2) that fourth-order product means are related to lower-order
means in the same way as for a mormal probability distribution, and

solved the resulting set of two dynamical equations.
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(5.1.1), in closed form, for an arbitrary initial spatial distribution of
the velocity, which would render the power series solution un-
necessary. The other is the formulation of a single dynamical
equation describing the time-variation of the complete probability
distribution of the velocity field, which would render unnecessary
the solving of a large number of dynamical equations for product
mean values, The latter task encounters the fundamental problem
of the representation of a statistical distribution in function space.t

5.2. The flow of energy

It was seen, in Chapter 11, that a description of the velocity
distribution by means of a Fourier analysis makes possible the
concept of mechanical components, or degrees of freedom, which
make additive contributions to the energy of the motion. We shall
obtain a partial understanding of the general process of decay if we
can see, qualitatively, how the energy associated with the various
degrees of freedom varies with time. In general, there is a flow of
energy from one degree of freedom to another, from one (direc-
tional) component of the velocity to another, and a flow out of the
mechanical system into heat. All these changes are comprehended
in a description of the temporal variation of the Fourier coefficient
dZ(x) or of the spectrum tensor @ (x). The examination of both of
these quantities proves to be useful.

The equation for the rate of change of dZ(x) is obtained from the
Navier-Stokes equation (5.1.1) by multiplying by

1 t-lﬂ‘.lﬁ -1 E-lﬂ.lj Ty — 1 eﬂ-ldl‘. Ly I)
. E—Iﬂ % | P b =
(2m)® ( - )( ~ Xy )( — X%y
and integrating over all x-space in the manner of (2.5.2). We find,
neglecting terms of higher order in dx,

3‘_%(1}- e f . dZ(x ) dZ{x') - oed W(x) - e dZ(x),

(5.2.1)%

t+ Note added in proof: For a recent paper which is important in this con-
nexion, see E. Hopf, 'Statistical hydromechanics and functional calculus’,
Y. Rat, Mech. Anal. 1, 1952, 87.

1 We shall not show explicitly the dependence of quantities like dZ(x) on ¢
in this chapter, so long as there is no risk of confusion, in order to avoid too
great an array of symbols in the equations.
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where d W(x) is the Fourier coefficient of the pressure p(x)/p in the
sense that dZ(x) is that of u(x), and Parseval’s formula (see footnote
to p. 56) has been used (formally) to obtain the transform of the
non-linear term. In view of the relation (5.1.4) for the pressure, we
have, using Parseval’s formula again,

dW(x)= -%J.ru.dz'{u-—u')u.dZ(u'). (5.2.2)

Hence, with the use of the continuity relation in the form

x.dZ{x —x")=n".dZ(x - x'), (5.2.3)
(5.2.1) becomes
a—d%i) -nJ‘ _u.dZ(u—u’)[-—-dZ{u'}-l-;-,u. dZ(u']] —vx*dZ(x).
(5:2.4)

This dynamical equation for the Fourier coefficient dZ(x) tells us
neither more nor less than the Navier-Stokes equation from which it
is obtained, but it can perhaps be more readily interpreted in terms
of analytical dynamics.

The rate of change of the energy associated with the Fourier
coefficient dZ(x) is found from (5.2.4) to be described by

3dZ2(x) dZ,(x)
ot

- f [ dZ2(¢ =) dZ3 (') dZ () - . dZ(x — ') dZ () dZ ()]

+ L X e 42— ). dZ(x') k23 ()
—x. dZ*(x — ). dZ*(x') k, dZ(x)] — 202 ZF(x) dZ(x). (5.2.5)

The three terms on the right side represent the effects of inertia,
pressure,} and viscous forces respectively. The linear viscous forces
present no difficulty, and if no other forces were present dZ(x)
would decrease with time as e"; viscous forces change the
amplitudes, but not the phases,{ of the Fourier coefficients. The

+ ‘Pressure’ forces are a particular manifestation of inertia forces in a fluid
which fills all space, as is clear from the relation (5.1.4). However, it is con-
venient on occasions to treat pressure and inertia forces as distinct inasmuch as
they produce different effects.

{ Each of the directional components of dZ{x) is complex and can be
expressed in the form | dZ(x) | #*% (no summation over the values of 1),

8,(x) being the ‘phase’ of the i-component.
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effects of the inertia and pressure forces, on the other hand, are
represented by non-linear terms of considerable complexity. The
appearance of the integrals in (5.2.4) and (5.2.5) demonstrates the
continual modulation, or interaction, which occurs between every
pair of wave-numbers during the decay. The (multiplicative) inter-
action of two Fourier components with wave-numbers x’ and x”
forms a Fourier component with wave-number x’+x", so that
points in wave-number space can be regarded as being linked with
each other, through the inertia forces, in groups of three.

One or two features of the coupling between the various degrees
of freedom of the system can be deduced from (5.2.5). First, one of
the properties of the function dZ(x), as defined by (2.5.1) and
(2.5.2), is that dZ*(x)=dZ( —x), from which it follows that the

contribution to —% J. dZ}(x)dZ,(x) from the effect of inertia forces
x

is zero. The effect of inertia forces is thus to transfer energy from
one part of wave-number space to another, without changing the
total amount of energy associated with any directional component
of the energy. Secondly, we see, with the use of the continuity

relation (2.5.7), that the contribution to .-%dzr{u) dZ(x) from the

effect of pressure forces is zero. The effect of pressure forces is
evidently to transfer energy (at a rate depending on the interaction
with all other wave-numbers) from one directional component of
dZ(x) to another. These consequences of pressure and inertia
forces are net effects, in the sense that, for example, pressure forces
produce some interaction between dZ(x) and dZ(x') (for see
(5.2.4)), although the total effect of such interactions for all values
of %' is such as to leave dZ¥(x) dZ,(x) unaltered. The exchanges of
energy are dependent, in general, on the relations between the
phases of the different Fourier components as well as on their
amplitudes, and it is in the elucidation of the average properties of
the phase relations that the key to the determination of the energy
spectrum during the decay lies.

Only the average properties of the flow of energy interest us,
since the flow will fluctuate with different realizations (although the
fluctuations must be consistent with the general properties estab-
lished in the preceding paragraph). To obtain average quantities
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which are simply related to velocity-product mean values, we must
make an appropriate limiting operation on (5.2.5). For instance, if
we contract the indices ¢ and j in (5.2.5) in order to obtain the
physically important case of total energy, divide by dx, and proceed
to the limit dx— 0, we obtain (in view of (2.5.5))

3}'?;{1!) _ J' O, ') dax’ — D, (), (5.2.6)

where the limit

, .t %.dZ%x—x")dZ%x").dZ(x)
o= tim 3| dw
LT

may be shown to exist.}{ We may interpret Q(x, x’) (with caution,
since(5.2.6)is capable of defining only the net flow of energy into dx
from all parts of wave-number space) as the net mean rate of transfer
of energy from the volume element dx’ in wave-number space to
the element dx. Owing to the occurrence of the phases of the
Fourier components in the expression for Jf(x,x") (in contra-
distinction to @, (x) which depends on amplitudes alone), it is not
easy to get a clear picture of the mechanical processes responsible
for the transfer of energy.
We readily verify that (5.2.7) satisfies the conservation law

D(x,x") + O(x", x) =0, (5.2.8)

which reflects the fact that in an infinite fluid free from boundaries
inertia forces can do no more than transfer energy. The rate of

t+ It will be recalled that it was sssumed in § 2.4 that the energy of the
turbulence is spread continuously over the spectrum, which is equivalent to

assuming th"dﬂ:# “‘:L A%) exists. If this assumption were not valid at
L4

some instant, and for some value of %, owing to the occurrence of a line or step
in the spectrum (not to be confused with & steady periodic distribution of the
mean velocity) with a corresponding large magnitude of dZ(x), the limit (5.2.7)
likewise would not exist. The form of the dynamical equation (5.2.4) shows that
the rate of change of |dZ|" is of the third degree in |dZ|, the consequence of
which is that the value of |dZ| at any finite time later would be reduced to an
order such that the limits (2.5.5) and (5.2.7) exist. Spectral lines containing
a finite amount of energy can exist instantaneously, if produced by some external
means, but they cannot persist when the turbulence is left to itself.
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change of total energy per unit mass of fluid is thus

d d =
dﬂ;ﬂl_?‘ . E(x)dx
d [ ]
7 JO (%) dxe = — v | k3D, (x) dx from (5.2.6),

== - Fﬂ“{u)dlﬂ - Wi from {3-2'4)n

and = —2V : x*E(x) dx (5-2.9)

from (3.1.2) and (3.1.5), and is determined by the average disper-
sion of the energy about the origin in wave-number space. (5.2.6)
also shows that small-scale Fourier components lose energy by
viscous dissipation more rapidly than large-scale components.
However, this differential decay does not always lead to rapid
changes in the shape of the energy spectrum, since the inertial
transfer of energy between different wave-numbers tends to fill up
any regions of low-energy density in wave-number space. If it
were not for the higher rate of dissipation at larger values of « the
energy would tend to spread itself over an infinite range of wave-
numbers, and there would be an “escape’ of energy to infinity.
The mean values of the non-linear terms on the right side of
(3.2.5) can be expressed in terms of velocity-product mean values,
as could be established directly from the relation between dZ(x)
and u(x). It is simpler to return to (5.1.9) and take its Fourier
transform, giving the two complementary dynamical equations:

a_}eéi("_)-j;,(r)+Pﬂ{r)+av?'Rﬁ(r}, (5.2.10)

a—-?a";(i} = ' () + IT;;(x) ~ 203D (x), (5.2.11)
where  Tyle) = o (g i) = [Py e rd, — (5.2.12)

3T s g
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The three terms on the right side of (§.2.11) represent the contri-
butions of inertia, pressure and viscous forces respectively to the
rate of change of ®,(x), and are identical with the three terms on the
right side of (5.2.5) after the latter have been divided by dx and the
limit as dx — o has been taken. The properties already established
for the terms in (5.2.5) can also be established for those of (5.2.11),
although the proofs are superficially unrelated. Taking first the
contribution from inertia forces, we note that

Tu{o)-n,u.;.ﬁi+ ETI—'i My by = %;u‘u,u.-n.
that is, J‘I‘u(:)dn-n. (5.2.14)

showing, as expected, that the rate of change of

f@u(u) dx = w1y

owing to the effect of inertia forces is zero; inertia forces alter the
distribution of density, in wave-number space, of contributions to
u,u;, but they leave unchanged the total contribution. For the

pressure forces we have P(r)=o0

for all values of r, from the condition of incompressibility, so that
I;(x%)=0

for all values of x; the net effect of pressure forces is thus to con-
serve the total energy contributed by any small region of wave-
number space, although the directional distribution of this energy
might be changed.

Although it has been shown that inertia forces produce a flow
of energy between different wave-numbers for the same velocity
component, and that pressure forces transfer energy between
different velocity components for the same wave-number, nothing
has been established about the directions of these energy transfers.
Definite directions of the energy transfers, valid under all condi-
tions, are not to be expected, since special initial values of the
phases of the Fourier components could always be devised to
produce, temporarily, any desired flow of energy. Hence the most
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that we can do is to deduce general trends in the energy flow with
the aid of rough physical arguments. The effect of inertia forces is
to spread energy over an increasingly wide range of wave-numbers,
and thus to direct (in a statistical sense) energy towards those parts
of wave-number space where the energy density is lowest. Since
viscous dissipation is more rapid at larger wave-numbers, the trend
of the inertial transfer of energy will almost always be from small to
large wave-numbers, that is, small eddiest will derive energy from
large eddies. A similarly simple argument suggests that the transfer
of energy by pressure forces tends to equalize the mean squares of
the directional components of the velocity (and consequently, in
view of the continuity condition, to distribute the energy associated
with the volume element dx of wave-number space uniformly over
directions normal to x). A positive fluctuation in the pressure at
any point in the fluid represents, in a sense, stored kinetic energy,
and the velocity component which has the largest mean square will
make the largest average contribution to the pressure fluctuations.
But in releasing the stored kinetic energy the pressure is non-
directional, and the probable consequence is that it builds up the
weaker velocity component at the expense of the stronger. The
argument can be given more analytical form when the turbulence
has axisymmetry (Batchelor, 1946), but remains essentially as
stated. The conclusion that in general homogeneous turbulence
tends to a state of uniform directional distribution of energy (and,
we may speculate, to a state of isotropy) is in agreement with'
experiment and has long been known empirically.

5.3. The permanence of big eddies

It is possible to examine the flow of energy in more detail in the
neighbourhood of x =0, by expanding the various terms of (5.2.11)
as power series] in the components of x, as has already been done
for ®@,(x) in §3.1. The result established there (see (3.1.9)) is that

°i;'(“] -xlxmciﬂm"" O{k"}, {531)

t+ 'Small eddy’ is used here and elsewhere as a concise term for a Fourier
component belonging to a small length scale, or large wave-number,

1 Again making the assumption that the first few derivatives of the required
functions at x =0 exist. [t seems safe to make such an assumption about any
statistical quantity, but not about unaversged quantities involving the Fourier
coefficient dZ(x) which is not an analytic function of %, But see the note on p. 195.
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where C,,, is a tensor which is independent of x but may depend
on . We wish to examine the corresponding terms of lowest orderin
the expansions of I';(x) and I1,(x) (the viscosity term requiring
no further attention).

Taking I';(x) first, we define T (x) as the Fourier transform of
u,u, uy, 80 that

vty = | Yaaf) e (5:3-2)

and m-ITm{u)r*'*'du-me{-u)e*'-'du,

Substituting in (5.2.12) we find

F'eg() = e Yag(¢) = Yy = ). (5-3-3)
Now expand Y;,(x) as a power series in the components of x:

T‘H{I)-Tm'l’ l'le'{' very
where Y., Tp .. are tensor functions of ¢ alone, The continuity
condition requires p
BT’ui"l“, =0,

i-t- I’Tlu(u) =0,

for all values of x, so that the coefficients in the power series must
satisfy the equations

Ty=0,
Tap+ Yoy =0, (5-3.4)
etc. Hence the behaviour of I';(x) near k=0 is
L if() = x5, 0m + O(x), (5-35)
where Cigm=$ T Y Tajm (5.3.6)

permi,f perml,m

the summations being over all permutations of the indices shown.
Now let us consider Il (x). We define ©,(x) by

S [0 et (5:3.7)
from which we also have

55’?; -J‘G,(u)r"-'du -J.Gi( —x)e™ T dx,
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Substitution in (5.2.13) gives
T g(¢) =1, ©(2¢) — k£, 0 —x)]. (5.3.8)
The expansion of ©,(x) in powers of the components of x is
Ox)=0,+x,08y4+...,

where ©,, O, ... are tensor functions of ¢ which are required by the
continuity condition, viz.

K, O,xn)=0,
for all %, to satisfy the equations
0,=0,
Oy+Oy=o, (5-3.9)
etc. Hence the behaviour of I1(x) near k=0 is
T () = xc kT g, + O(Y), (5.3.10)
where Hygm=4 X Y 8,0, (5.3.11)

permi,f perml.m

It seems that T (x) and Il (x), like ®,(x), are of the second
degree in x near x =0, However, it is the sum of these two quantities
that interests us, and one further condition concerning the sum has
yet to be used. The pressure and inertia forces are related by
equation (5.1.3), from which we find

! g — Y

P Or; oy,
An equivalent form of this equation follows from (5.3.2) and
(5:37) a8 K0, (3) = — kg Y ). (s5.3.12)t

The leading terms of the expansions of ©,x) and Y, (x) must
therefore satisfy

Kikpkf8 O+ Tiy) =0
t+ It follows readily from this relation that
Ty () == = ey, Ty 2¢) + 2, Ty i(0)],
Mhlmkuhmnbﬂmdummbuﬂmhﬂ"éﬂfmpm
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for all values of x, which requires
= '("uen'F Y ixzt) = 0. (5.3.13)

permi, k,

Now we have, from (5.3.6) and (5.3.11),

rm'f'nihﬂi‘ E E [Tmal-ﬁﬂﬂh).
permi,§ perml, m

= "‘ = ( -Thﬂ-‘heﬁ)i
perm i, j

in view of (5.3.13) and the symmetry of the tensors T, and 4, in
the indices ¢ and /; the relations (5.3.4) and (5.3.9) then show that

Ttgpm + i gom =o. (5.3-14)

Consequently the expansion of I';(x) +I1,/(x) begins with a term
of not less than the third degree in x.

We have seen that the whole of the right side of (5.2.11) is of
order x* at most when « is small, and in view of (5.3.1) the conse-
quence for the left side is that

;‘:—,C‘m-ﬂ- (5.3-15)
In other words, in the immediate neighbourhood of x=o0 the
spectrum tensor has the same form throughout the whole history
of the decay. As x— o the flow of energy owing to all three causes—
inertia, pressure and viscous forces—falls off more rapidly than
does the spectrum tensor itself, so that the spectrum tensor near
x =0 hasa permanent form, viz. that given it by the initial conditions.
We can think of this physically as meaning that the big slow eddies
interact very weakly with the remainder of the turbulence and
preserve their energy intact. The directional distribution of energy
in the big eddies is also permanent, so unless the turbulence is
isotropic initially, the big eddies will remain anisotropic. We can
foresee that it will hence be difficult in practice to generate turbu-
lence which is completely isotropic. In general, the permanence of
the distribution of energy in the big eddies is not of much practical
importance because the region of the spectrum described accurately
by the first term of (5.3.1) usually contains a negligible amount of
energy. Nevertheless, there are some aspects of the decay which are
very directly governed by the low wave-number part of the spectrum,
the most striking of which is described in the next section.
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The result (5.3.15) describes the behaviour of a derivative of the
spectrum function at x=o0, and there must exist an equivalent
condition for an integral of the correlation function R,(r). We find
from (5.3.1) and (2.4.3) that

"D, 4(x) 1
2C e = ™ B::) Wt rpTeRylr)dr, (5.3.16)

and the equivalent result is that the integral on the right side of
(5.3.16) is invariant during decay. In the particular case of isotropic
turbulence, for which R;,(r) has the form (3.4.5) and Cy,, has the
form (3.4.24), we readily find that the above result becomes

-]
Ce= 3L" u?| rf(r)dr=constant during decay. (5.3.17)
0
This condition on the function f{r) was first obtained by Loitsiansky
(1939), and the equivalent result for the isotropic spectrum function
E(x) was pointed out by Lin (1947). The general result for homo-
geneous turbulence was put forward by Batchelor (1949a).

5.4. The final period of decay

We have seen that the energy spectrum at very small wave-
numbers suffers very little modulation during the whole of the decay
process. On the other hand, the energy in higher wave-numbers of
the spectrum is being rapidly dissipated by viscosity, and it follows
that ultimately the big eddies will supply most of the remaining
energy of the turbulence. If we choose the current time ¢ as any
instant after this ultimate state has been reached, we have the
opportunity of formulating a decay problem in which the initial
form of the spectrum (or, rather, the relevant part of it) can be
prescribed from the relation (5.3.1). This would not by itself make
a tractable problem, but the assumption already made, that the
decay is in an advanced stage, suggests that we might suppose with
consistency that the turbulent velocities are so small as to make
inertia forces negligible.4 On this basis the dynamical equation is
linear, and we are able to get a complete solution of the decay of
the turbulence at very large times after its.formation. It happens

+ Giving a rather spurious kind of ‘turbulence”.
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that this final period of decay occurs at decay times which are
within the reach of measurements in a wind-tunnel stream, and it
has thus been possible to obtain valuable information about what,
in the initial stages of decay, were the biggest eddies.

One of the two conditions defining the final period of decay is
that ¢ is so large that the non-linear terms (due to both inertia and
pressure forces) in the Navier-Stokes equation are negligible, so
that

—3'3(;79 =vViu(x, 1). (5-4.1)

This ‘heat-conduction’ equation may be solved in terms of an
initial distribution of velocity in the realized field, as was suggested
first by E. Reissner (1938). The corresponding equation for the
Fourier coefficients is

3
_d,z,a(tif) = — vk?dZ(x, 1), (5-4-2)

of which the solution is
dZ(x, £) = dZ(x, t,) e <", (5-4.3)

where £, is an initial instant of time (which must, of course, lie
within the period of validity of (5.4.1)). The corresponding variation
of the spectrum tensor with time follows from (2.5.5) and (5.4.3)

- By, 1) = By, (3, 15) <0, (5.4-4)

so that the spectrum at an arbitrary time is determined when we
know its initial form.

The exponential in (5.4.4) decreases rapidly as «x increases, and
the other condition defining the final period of decay is that (1 —1,)
is so large that the right side of (5.4.4) is dominated by the first term
in the expansion of ®(x,?,) in powers of the components of x.
That is, in view of (5.3.1),

D%, 1) ~ Cippm KKy € > -1 (5-4.5)

for (t—t,) sufficiently large, where C,, is independent of ¢
according to the result established in the previous section. Thus,
apart from the constant tensor C,4, which is determined by the
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initial conditions, the asymptotic form of the spectrum tensor is
completely determined as a consequence of the relative permanence
of the big eddies. It is difficult to make an a priori estimate of the
decay time after which (5.4.5) will be valid, but since the variation
of e~ with « is very rapid the relation (5.4.5) is likely to hold
soon after the first condition is satisfied, i.e. soon after inertia forces
become negligible.

The velocity correlation tensor corresponding to the asymptotic
spectrum tensor (5.4.5) is found from (2.4.2) to be

(2m®)t 7,7 Cy [
)= Cog - B0
R~ i Con i | =0 )
_ _ e (5-4-6)
In particular, the energy tensor in the final period is
—e (2m)t
My = e — )] €
and the meanr squares of the velncity components are given by
7 (am)l
O™ O™ G (547)

We have thus arrived at the interesting result that the energy of the
turbulence ultimately decreases as the (—~§) power of the time.
Furthermore, the directional distribution of the energy in the
asymptotic state is governed by the values of C,y, and is identical
with the directional distribution of energy in what, in the initial
stages of the decay, were the lowest wave-numbers of the spectrum.
The asymptotic longitudinal correlation coefficient, in the direction
of, say, the x,-axis is

R ll(rl a'l n'l t)

[ BV{‘ ‘) {5'4'8)

in view of the rcquirtment of the continuity condition that Cy,,, =0
{see remark following (3.1.10)). This longitudinal correlation
coefficient is the same for all directions of r, and is also the same for
all kinds of homogeneous turbulence.

These conclusions have been verified by direct measurements of
the turbulence generated by a grid of bars lying in two perpendicular
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directions in a plane at right angles to a wind-tunnel stream
(Batchelor and T'ownsend, 19485). It was necessary to use a grid
of small bar spacing (M =o0-16 cm) and to use a small stream speed
(U =620-goocmsec™?) in order to achieve the small Reynolds
numbers for which the linearized Navier-Stokes equation is
applicable, and the final period of decay, as defined above, was found
to set in at a distance of about 450M from the grid at the lowest
speed used. At higher values of the grid Reynolds number (for
M=016cm and U=620cmsec?, the grid Reynolds number is

200 = 102
Slope 10vM/U */*/:,
s s
(V) / Acm?)
| >
100 - ~ 01
ﬂ A A i 0
- 500 x,/M 1000

® (UYuDt : M =016 cm, U= 620 cm sec™!
O (UYud)t : M=064 cm, U= 150 cm sec™
4+ A'  : M=016 cm, U=0620cm sec™!

Fig. 5.1. Decay of energy in the final period (UM/v=650) (from Batchelor
and Townsend, 19484).

UM|v=650) the final period of decay occurs at a much larger
number of mesh lengths from the grid. Fig. 5.1 shows the measure-
ments of uj, plotted in a form suited to the asymptotic decay law,
and values of A? calculated from measurements of (cu,/dx, ), where

ﬁ (ﬁ_ l) _ [8’}?“(? 10,0, :)]

(the x,-axis was chosen in the direction of the stream, x, being
measured from the grid). The relation (5.4.8) shows that in the
final period of decay A® has the value 4¥(f —1,), and a straight line
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of slope 4» (multiplied by a factor M/U to make the transition from
the temporal decay of the theoretical turbulence to the spatial decay
of the experimental turbulence) has been drawn in the figure for
comparison with the measurements. Fig. 5.2 (in which A has been
taken as equal to the radius of curvature at r =0 of the measured
curve in each case) shows the good agreement between the
theoretical form (5.4.8) and measurements of the correlation

coefficient at three stages of the decay.
10 x/M
* 9%0
o
+ 640 )meaturements
f(r) ® 30
u o -
oS}~
]
0 10 tjA 20 30

Fig. 5s.2. Longitudinal correlation coefficient in the final period (UM/v=650)
(from Batchelor and Townsend, 19485).

Fig. 5.3 shows measurements of the ratio uj/uj (u{/uj had
effectively the same values) in both the initial and final stages of the
decay (Batchelor and Stewart, 1950). After being close to unity in
the initial stages of the decay (when the turbulence is isotropic, so
far as the bulk of the energy is concerned), u}/u} increases up to an
asymptotic value in the neighbourhood of 1+5. The turbulence is
anisotropic in the final period of decay after being apparently
isotropic earlier, which implies that the motion associated with the
smallest wave-numbers at the instant of formation of the homo-
geneous turbulence is not isotropic. This cannot be regarded as
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surprisingt in view of the very marked directional character of the
grid and the method of generating the turbulence. Presumably the
row of bars parallel to the x;-axis produces large contributions to
u] and uf, while the row parallel to the x,-axis produces large
contributions to u} and u}, the net result being that the contribution
to uf from the smallest wave-numbers is permanently greater than
the contributions to u} or uf.

O X

x UMM .45
0 UM/
1 i 1 I

Fig. 5.3. Directional distribution of energy in the final period
(after Batchelor and Stewart, 1950).

A prediction about the velocity field in the final}period of decay
which has not yet been tested experimentally can be obtained with
the aid of the Central Limit Theorem. The relation between the
velocity fields at times ¢, and ¢ follows from equation (5.4.1) as

. Na 1 , _(l:-:‘}' ,
u(x, ) [m:_g.);lf“("‘*’“"[ et dx.( |
5.4.9

As t—1, tends to infinity, the exponential factor in this integral
becomes different from zero (and approaches unity) for a larger and
larger region of x’-space centred on the pointx. Hence if we regard
the integral as being equivalent to the sum of a number of sub-
integrals, each extending over a volume V (say) of x'-space, the
effect of increasing ¢ 1, is to increase the number of terms in the
expression for u(x,?). Each of the terms in this expression is

+ If we were not so accustomed to the phenomenon, we might be surprised
mmmw:winmbﬁmhhMiﬁﬂmﬂth
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a random variable with finite second moment, so that we have here
a type of problem to which the Central Limit Theorem is applicable.
In its simplest form, the theorem sayst that the probability distribu-
tion of the sum (i.e. of u(x, 7)) tends to a normal or Gaussian form
as the number of terms tends to infinity, provided the various terms
are statistically independent. In the above case the terms, each of

them being essentially the integral | u(x’, t,) dx’ taken over a certain

region of volume V, are not statistically independent, but it is clear
that we can give the terms this property to any required degree of
approximation by making V sufficiently large. Alternatively, it is
possible by imposing very weak conditions on the statistical
properties of u(x’, #,) to establish the same result by making use of
one of the more general forms of the Central Limit Theorem in
which the terms are not required to be independent. Similarly, the
joint-probability distribution of the values of u(x, t) at any n values
of x can be shown to tend to a normal form as ¢ — ¢, c0 by making
use of the form of the Central Limit Theorem appropriate to
a 3n-dimensional variable. (Cramér, op. cit. p. 113, gives a state-
ment of the theorem for the case of a sum of independent 3n-
dimensional terms,)

Hence, in the final period of decay, the statistical distribution of
the velocity field tends asymptotically to the normal form, the
second moment being given by the expression (5.4.6). The final
period of decay provides one case in which we are able to deduce
(the limiting form of) the complete statistical representation of the
turbulence at one instant, as well as a complete description of one
realization of the velocity field at time ¢ in terms of the same field
at time #,.

It is not diffieult to obtain also the asymptotic form of the mean
product of the velocities at two different times of decay (Batchelor
and Townsend, 19485); as would be expected, correlation between
the velocities persists over a longer time interval at larger times
of decay.

+ See H. Cramér, Random variables and probability distributions, Cambridge
University Press, 1937.
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§.5. Dynamical equations for isotropic turbulence

Since we shall be concerned primarily with isotropic turbulence—
or rather, with that part of the spectrum which becomes isotropic
under the action of pressure forces—in the remaining chapters, we
shall set out here the formal dynamical equations for this case. We
have seen in § 3.4 that the condition of isotropy fully determines the
dependence of the spectrum tensor @ (x, 1) on the direction of x,
and a discussion of the dynamics of isotropic turbulence is therefore
concerned wholly with the exchange of energy between wave-
numbers of different magnitude. This permission to think of the
effect of eddy size alone greatly facilitates the construction of
physical hypotheses about the transfer of energy, as will be seen in
the following chapters.

When the turbulence is isotropic, the tensor equations (5.2.10)
and (5.2.11) each reduce to a single scalar equation. Taking first
the dynamical equation for R;(r), we have found (see equations
(3-4-5) and (3.4.6)) that R(r) can be expressed in terms of the scalar
function w*f(r) as

Ry(e)=18] - Lrnr+(f+101)8, |

where f'=8f/r. It was also established that the solenoidal first-
order tensor pu, is identically zero in isotropic turbulence, so that
the term P (r) is zero (as we expect from the interpretation of the
effect of F(r) as a tendency to isotropy). Denoting the triple
velocity correlation u,uu; by Sg(r), the term Ti(r) is (see (5.2.12))

T r)= 33‘”‘" as"“‘" (5.5.1)

and we found in § 3.4 that S (r) can be expressed in terms of the
scalar function #*k(r) (see (3.4.32)). Consequently, (5.2.10) is in

effect an equation for %u‘f{r) in terms of ¥*k(r), and derivatives of

f(r) arising from the viscosity term. The easiest method of obtaining
this scalar equation is to put ¢ =5 in (§.2.10) and sum over all values

of 1. We have
Ri(r) =u¥(3f+1f") = 2R(r), (5-5-2)
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as already displayed in (3.4.14), and

VIR, (r)=2 (::, + 5-5) R(r);

also, in view of (3.4.35),
a .
Ti(r)= B [Sudr) = Sy —1)]
I
~(rz+3)K (553)
= ra+3) (r), §.8.1
where K(r) stands for «* (8_‘1 + %) k(r). Hence for isotropic turbu-

lence (5.2.10) reduces to

df.f,r) -z(f-* +3)M,)+zl,(f“2+=3);¢(,) (5-5-4)

A first integral of this equation is

f‘";_{f’)_ua(a 4)k(r)+2l*u*(;: nr)ﬂr)’ (5-5-5)

which is the dynamical equation derived first by v. Kérméin and
Howarth (1938); note that although not suggested by the notation,
the quantities u, f and & in this equation are functions of the time
of decay.

Putting r=o0 in (5.5.5) gives the rate of change of energy as

QY et IV
et A (5-5-6)

the proportional rate of decrease of energy is
s de
wtde AT’
whence comes the term ‘dissipationt length parameter” for A. We

note the interesting result, for the speciai case of a power-law decay
of kinetic energy, n*oc t-", that

f
A= (5-57)

n

Equating the coefficients of other powers of ? in the expansion of

4+ But note that .\ is not the length scale of the eddies responsible for most of
the dissipation (sce § 6.4).
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all terms of (5.5.5) yields the rate of change of other physical
quantities. For the coefhicients of r? we find the equation

d L L v

3 (1Y) = 4uke + P'fy, (55-8)
which, in view of (3.4.8), is the equation for the rate of change of
mean-square vorticity,

The corresponding equation (5.2.11) for the spectrum tensor
similarly reduces to a single scalar equation. Again the scalar
equation emerges most easily if we contract the indices to obtain

*g;'l’u(u)-f‘«(u)—m'%tu). (5-5:9)
where, according to (3.4.13),
y(x) =3 x' ;
and, according to (5.3.3) and (3.4.34),
[ () = 2647 (). (5.5.10)
Consequently the dynamical equation for the energy-spectrum
function E(x) is 2E(x)
34 = T(x)—2ve"E(x), (5.5.11)

where T(x) represents the contribution due to transfer of energy
from all other wave-numbers and is related to T(x) by

T{k) = 4meY () (5.5-12)
The connexion between (5.5.4) or (5.5.5) and (5.5.11) is established
from the Fourier transform relations (see (3.4.15), (3.4.36) and

(3-4-37)) AT R(Y)
T(x) ;J. {i (ra% + 3) K(r) ¥ dr,  (5.5.13)
R(r)
E(x) ﬂnxr
‘(r—+3) K(r) I T(x) xr (5.5.14)

These formal relations between double- and triple-velocity
correlations and their transforms slightly obscure the way in which
the Fourier coefficients dZ(x) interact to produce the transfer of
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energy denoted by T(x) in (5.5.11). We can recover this more
fundamental information from (5.2.6). Whether the turbulence is
isotropic or not,

2. 21 [0ut0) a4

'H O(x,%') dx’ dA(x)—2vk3E(x),  (5.5.15)

where dA(x) is an element of area of a circle of radius x centred at
the origin, and O(x, x') is given in terms of the Fourier coefficients
by (5.2.7). The rate of change of energy associated with all vector
wave-numbers whose magnitudes are less than x is

3| Bty de”
.L a: _J‘

- -—J‘ € J‘ll"l:ﬂQ(I" *) d:‘ il
--:va"E(x')dx'. (5.5.16)

en O(x",»") da’ dx" — ZPJ‘: x"VE(x") dx”

in view of the antisymmetry of O(x’,x") in x” and x’ (see (5.2.8)).
When the turbulence is isotropic, Q(x’, x") must be a function of
k', k", w'.x" (and ) alone, so that

%I:E(x')dx'

- ‘-[:-IJ‘:-'-[:'-II:—I m"‘ K.' "K- cos (a' - ﬂ')}
x di'd (cos0) de"d (cos )~ 2 K VE(c") b

-— J‘ | P(x',x')dx'dx'-—:IPJ.:I'"E(K']dK'- (5-5-17)

g =i
where

P(x, x"}--f :. f :l O(c', x", K'x" cos (€ —07)) d (cos 6") d (cos 7).

(5.5.18)
Also, in the case of isotropic turbulence, a comparison of (5.2.6) and
(5.5.9) shows that

Jotex)a =T ) =T W) = L T, (5:5.19

4m



CHAPTER VI
THE UNIVERSAL EQUILIBRIUM THEORY

6.1. The hypothesis of statistical equilibrium

It has long been the practice in statistical mechanics to seek out
problems in which the statistical conditions are uniform, in view
of their much greater tractability. It is very natural therefore to
make the same search in the field of turbulence. The problem has
already been specialized in this book to the case of turbulence which
is spatially uniform; are there now any aspects or parts of homo-
geneous turbulence on which the temporal decay does not have an
appreciable direct effect? The question may also be put in
mechanical terms which make clear the basis for the steadiness: are
there any degrees of freedom of the dynamical system for which the
forces are in approximate statistical equilibrium?

It will be useful to consider first the time scale of the decay of the
total kinetic energy in order to see where we may mof expect to find
statistical equilibrium. If we can regard the range of wave-numbers
containing most of the energy as forming a definite group (the
‘energy-containing eddies ), with characteristic velocity u ( = (Juf)t)
and characteristic length ! (which might be, for instance, the
reciprocal of the wave-number at which the maximum of the energy
spectrum function E(x, f) occurs), it is permissible to think also of
a characteristic time //u of the energy-containing eddies. We want
to compare this characteristic time with the time scale of the decay
of energy in order to see how close to—or far from—equilibrium
are the energy-containing eddies. Now it has been remarked before
that the rate of decrease of kinetic energy is found experimentally
to be of the order of u¥/l (some of the evidence is described in the
appendix to this section) during an initial period of the decay in
which inertia forces are appreciable; that is,

de* A
a1

where 4 is a number of order unity (which may vary slightly with
the time of decay and the initial conditions of the turbulence and

(6.1.1)
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the choice of /). The time scale of the decay of energy is

de*| 1/
o\ |32
and is thus of the order of the characteristic time of the energy-
containing eddies. It appears that the whole life (or, at any rate,
that part of it for which (6.1.1) is valid) of the turbulence is not
longer in duration than several characteristic periods of the energy-
containing eddies, the reason being that the process of adjustment
of the energy-containing eddies is the process of decay. We have
here a situation which is very far from that of the kinetic theory of
gases, and the energy-containing eddies are far from being in
approximate equilibrium under the action of inertia and viscous
forces.

However, this does not exhaust the possibilities. We saw in the
previous chapter that inertia forces result in the spreading of the
energy of the turbulence over a wider and wider range of wave-
numbers, and that this process will be checked only by the stronger
viscous damping at large wave-numbers. We may expect that the
spectrum function E(x, t) will have a maximum at some value of x
and will fall off to zero monotonically as x—+c0. Provided that
the characteristic time of eddies decreases as their size decreases
—which is intuitively very plausible and is in accord with visual
observations of turbulent motion, but will need to be checked
a posteriori—there is a chance that some parts of the spectrum
will have a characteristic time small compared with the time
scale of the over-all decay and will therefore be associated with
degrees of freedom which are in approximate statistical equi-
librium. The concept of a characteristic time of eddies of a certain
size is so indefinite that we cannot do more than suggest the
existence, at sufficiently large wave-numbers and under suitable
conditions, of a range of the spectrum belonging to degrees of
freedom in equilibrium, and rely on experiments to confirm or
contradict the suggestion. So far as they go, the available measure-
ments are consistent with the hypothesis, and as a consequence the
idea of an equilibrium range of the spectrum, and the theory which
has been built upon it, constitutes the most important development
of the last ten years. This development, to which the present chapter
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is devoted, is the theory put forward first by A. N. Kolmogoroff
(1941a, c), suggested independently by L. Onsager (1945, 1949)
and C, F. von Weizsicker (1948) some years later, and partly
anticipated by A. M. Obukhoff (1941).

Appendix to §6.1. The empirical relation (6.1.1) is so useful and
relevant to the ideas of the present chapter that some of the evidence
will be presented here, even though the more detailed discussion of
the energy-containing eddies must wait until Chapter vi1. A choice
of the length of I which permits direct measurements is the longi-

tudinal integral scale -
I Ry (r,0,0,t)dr

0 -
Ru(ﬂ', 0,0, f) -

Lp(‘) =

which, for isotropic turbulence, in view of (3.4.21), is related to the
spectrum function in the following way:

f:rlf-:(x, ) dx

L)=| fintydr=3"20 (6.1.2)
f: ¢ E E(k, t)dx

This length L,(t) is not as directly representative of the part of the
function E(x,f) that makes the major contribution to the total

energy rE(x, t) dx as it might be, for it gives too much weight to
0

small values of x, but the difference is not enough to obscure the
point at issue. Measurements of L, at various stages of decay and
at several values of the Reynolds number UM/v of the grid pro-
ducing the turbulence have been reported (Batchelor and Townsend,
19484a), together with measurements of u and A made under the
same conditions. The measurements can therefore be used to
determine

_Lpde® Ly v

Bdt - PAwx

which, according to (6.1.1), should be approximately constant and
of order unity. Fig. 6.1 shows that the values of this quantity
obtained from the measurements are in fair agreement with (6.1.1).
Scattered observations of L,, u and A at other grid Reynolds
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numbers are also consistent with (6.1.1). R. W. Stewart (1951) has
shown experimentally that the part of the correlation function
flr,t) that is determined by the energy-containing eddies has
approximately the same shape at various stages of the decay when
plotted as a function of r/L,, for UM/v = 5300, this shape (with
a suitable transformation of the ordinate scale, see §7.2), is also
approximately independent of Reynolds number, suggesting that
the values of / and ¥ at any moment are sufficient to determine the-
instantaneous conditions and in particular the approximate rate of
decay, which is consistent with (6.1.1). Other relevant evidence is
presented by H. L. Dryden (1943).
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6.2. Turbulent motion at large Reynolds number

The consequence of the hypothesis of statistical equilibrium at
sufficiently high wave-numbers is that the rates of change of mean
values (and their transforms) determined by this equilibrium range
of wave-numbers can be regarded as negligible. Although a useful
simplification, this hypothesis by itself does not permit definite
predictions to be made. It is still necessary to know something
about the transfer of energy between different wave-numbers and
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about the nature of the equilibrium. Anadditional hypothesis which
fills this need will be described in the next section, and in order that
it will appear natural, we shall first put forward some general ideas
about turbulent motion at large Reynolds number.

We have seen that inertia forces tend to spread energy over as
wide a range of wave-numbers as is consistent with the stronger
viscous damping which occurs at large wave-numbers. The balance
produced by these two opposing tendencies is controlled by the
Reynolds number of the turbulence (we can leave aside, for the
moment, the question of how to choose the length and velocity
which determines the Reynolds number), and the higher the
Reynolds number, i.e. the smaller the value of v, the greater will be
the success of the inertia forces in transferring energy to higher and
higher wave-numbers. One may regard each degree of freedom of
the motion (i.e. each wave-number component) as having its own
Reynolds number—a possible definition would be [E(, £)]#/vxi—
and the effect of decreasing v is to increase the dominance of the
inertia forces over viscous forces for the motion associated with
that degree of freedom. Consequently the region of wave-number
space which is affected significantly by the action of viscous forces
moves out from the origin towards x =co as the Reynolds number
increases. In the limit of infinite Reynolds number the sink of
energy is displaced to infinity and the influence of viscous forces is
negligible for wave-numbers of finite magnitude.

This dominance of the motion by inertia forces when the Reynolds
number is large, for all except components of very large wave-
number, occurs in other hydrodynamical situations. When fluid
flows steadily past a rigid boundary, the effect of viscous forces is
confined, approximately, to a boundary layer which decreases in
thickness as the Reynolds number of the flow increases. At very
large Reynolds numbers viscous forces are effective only within this
layer in which the velocity changes rapidly from zero at the boundary
to the appropriate value (determined by inertia forces and the
geometry of the boundary) at the outer edge of the boundary layer.
If a Founier analysis of the velocity distribution were made, the
near-discontinuity of the velocity at the boundary would be
represented by the very large wave-number components, so that
here too the effect of viscous forces is negligible, except in the outer



108 THEORY OF HOMOGENEOUS TURBULENCE

parts of wave-number space, when the Reynolds number is large.
Mathematically the process can readily be understood, in a quali-
tative way, as a balance between the tendency to form disconti-
nuities, arising from the non-linear term u.Vu in the equation of
motion, and the damping term »V*u,; as the parameter v approaches
zero, the steep gradients, formed by the non-linear term and
permitted by the damping term, become closer to discontinuities.
T'he existence of a rigid boundary, with a no-slip condition, places
these layers of rapid change in velocity at the boundary, but in
turbulent flow they occur in the interior of the fluid. The existence
of dissipation layers in turbulent motion has been emphasized by
J. M. Burgers (1948 a) who has investigated them quantitatively for
a hypothetical simplified equation of motion.t More will be said
about this important matter in Chapter vi1r,

The relegation of the influence of viscous forces to the outer parts
of wave-number space at large Reynolds numbers may be inter-
preted in another way, suggested by the known results concerning
the stability of hydrodynamical motions. There are some steady
flow fields which are unstable to small periodic disturbances of
wave-number x,, say, for Reynolds numbers greater than a certain
critical value R,, and unstable to other disturbances of wave-
numbers x,, kg, ... for Reynolds numbers above Ry, R, ... respec-
tively, where R, <R,<R;.... (An example is the steady flow
between two concentric rotating cylinders when the circulation
about the inner cylinder is greater than the circulation about the
outer cylinder.}) Hence if the Reynolds number of such a flow field
is increased from zero to infinity, the various instabilities enter (or
would enter if the same steady flow could be preserved at all
Reynolds numbers) at the Reynolds number for which the inertia
forces are just dominant (in the sense of being able to transfer energy
to the disturbance more rapidly than viscous forces are dissipating
the encrgy of the disturbance) for a disturbance of certain wave-
number. We can regard the entrance of an instability as being the
excitation of one more degree of freedom (or normal mode of

+ J. D. Cole (Quart. Appl. Math. 9, 1951, 225) has found that solutions of the
. fu éu tu :
equation — +u _-=v _— have the same general properties.
i ox cx
1 See D. Mcksyn, * Stability of low between rotating cylinders’, Proc, Roy.

Soc. A, 187, 1048, 115,
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motion). The number of degrees of freedom which are excited at
any given stage depends on the Reynolds number, and at infinite
Reynolds number all those modes of motion of which the system is
capable are excited. In the case of turbulent motion, there is
a continuum of degrees of freedom, all of which are excited to some
extent, so that Reynolds numbers are not ‘critical’ in the stability
sense, but it is still true that raising the Reynolds number permits
the domination of more degrees of freedom by inertia forces and
reduces the number which are (relatively) suppressed by viscous
damping. We may anticipate that at finite (but large) Reynolds
number the spectral density of energy in turbulent flow will begin
to decrease sharply at some large wave-number which marks the
beginning of the range of wave-numbers at which viscous forces are

6.3. The hypothesis of independence of Fourier components
for distant wave-numbers

The picture of turbulent motion at large Reynolds numbers
which has been described can now be made the basis of an hypo-
thesis which supplements and greatly increases the usefulness of the
hypothesis of statistical equilibrium at large wave-numbers.

In the early stages of the generation of a field of turbulence, of
whatever kind, only the smaller wave-numbers of the eventual
spectral distribution of energy are excited. These smaller wave-
numbers are those which are of the order of magnitude of the
reciprocal of the various linear dimensions of the mechanical system
generating the turbulence (for example, the diameters of and the
distance between the bars of a grid placed across a stream, or the
diameter of a pipe through which fluid is being forced under
pressure), and they receive energy directly from that mechanical
system. Then, as we have seen, the action of inertia forces is to
transfer energy to other (and, in general, higher) wave-numbers
and to direct it to the sink provided by viscous dissipation. There
will thus be a range of wave-numbers which is not excited directly
by the external large-scale forces which generate the motion, and
which owes its excitation entirely to the energy transfer by inertia
forces. Although we have no direct information about the nature
of the transfer process, it is very plausible that the influence of the
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external conditions is strongest for the small wave-numbers on
which they act directly, is less strong for the adjacent range of
wave-numbers, and disappears altogether for those high wave-
numbers which are at the end of a long chain of inertial transfer
processes. The process of statistical transfer of energy across the
spectrum will surely be accompanied by a loss of the order or
‘information’ contained in this energy.

If it is true that the process of transfer of energy to higher wave-
numbers is accompanied by a weakening of the influence of the
large-scale conditions of the motion, an immediate prediction
follows from our conclusion in Chapter v that the effect of pressure
forces is to tend to eliminate directional preferences in the energy
associated with each volume element of wave-number space; what-
ever the directional preferences of the large-scale components of the
motion, the motion associated with sufficiently large wave-numbers
should be isotropic. This is a prediction which is readily tested
experimentally, and has now received considerable support
(Townsend, 19484; Corrsin, 1949; Corrsin and Uberoi, 1950;
Laufer, 1950). Many different tests of isotropy of the small-scale
components may be used, and the success of the above prediction
has been found to vary with the test adopted. Townsend (19485)
checked that the relations

C) -2 () -2 (G (6.3.1)

which are valid for isotropic turbulence (see (3.4.7)), are approxi-
mately valid at different positions across the turbulent wake of
a cylinder (the x,-axis is in the direction of the stream). The mean
square quantities in (6.3.1) weight the small-scale components as
strongly as does the expression for the dissipation, so that if the
Reynolds number of the experiment is high enough to push the
dissipation into wave-numbers which are out of reach of the very
definite directional influence of the large-scale components (which
is revealed by the fact that u,u, was found to be about o-suf), the
relations (6.3.1) should hold. In fact, the experiments showed that
these relations were satisfied at Reynolds numbers smaller than that
required to separate the energy-containing and dissipation ranges,
80 that the theoretical prediction is evidently here being aided by
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some other effect. A sensitive test of isotropy of the small-scale
components (due to Corrsin) has been used by the other authors
referred to, and the measurements made by Laufer (1950) in the
turbulent flow under pressure between parallel planes can be
quoted as typical. In effect Laufer compared measurements of two
components of the one-dimensional spectrum tensor (defined as
in (3.1.1)), viz. O;,(x,) and O,,(x,), where the x,-axis is in the
direction of flow and the x,-axis is perpendicuiar to the planes. As
shown in fig. 6.2, the value of ©,4(x,) is definitely non-zero at small

£1©,(x)

KIOuwik) wmd 0O IK)

. ° a H——_ﬂ
-] 10 0 0 40 50
Kid  (channel width =2d)

Fig. 6.2. Isotropy of the small-scale components of turbulent flow
between paraliel planes (after Laufer, 1950).

values of x,, indicating the anisotropy of the energy-containing
eddies and also of a considerable part of the dissipation range of
wave-numbers, but decreases to zero more rapidly than does
©y,(xy). So far as this test is concerned, the hypothesis that there
exists a range of (high) wave-numbers for which the associated
motion is isotropic is permissible; and the same conclusion holds
for the other turbulent flows that have been investigated.

With this encouragement we can proceed to formulate more
definitely the idea of partial statistical independence of the high
wave-number components of the motion.t Instead of referring to

t Called the 'disorder hypothesis’ by C, F. von Weizsiicker (1948), and
regarded as & consequence of the 'cascade process’ of energy transfer by

L. Onsager (1945).
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the motion associated with the degree of freedom represented by
the wave-number %, we can say simply, the Fourier coefficient
dZ(x, t). The hypothesis is then as follows:

‘At Reynolds numbers and for values of % such that the Fourier
coefficients dZ(x, ) are determined principally by the non-linear
inertia term in the dynamical equation (5.2.4), and not by the
viscous damping term, dZ(x,f) is statistically independent of
dZ(x', 1) if [%|> |x'| or | x| <€|x’]’

The wave-number magnitude at which viscous forces do play
an important part can be measured by the value of x (x =&, say)
at which the maximum contribution to the dissipation integral

(see (5.2.9)
qu.:x‘E(x, t)dx, =e¢, say, (6.3.2)

occurs. 1f we regard the energy-containing eddies as being confined
approximately to the neighbourhood of the wave-number xq (= 1//,
where [ is the length in (6.1.1)) so that x is the order of magnitude
of the lower limit of the wave-numbers taking part in the inertial
exchange, we see that a necessary condition that the above hypo-
thesis should apply to any of the existing Fourier coefficients is

Ko €Kqi (6.3.3)
in other words, the ranges of x which determine the energy and
the dissipation must be widely separated. That a separation does
occur at high Reynolds number was first noticed by G. I. Taylor
(19385), whoshowed by calculation from measured spectrum curves

that -rE(x. t)dcand J.:x'E{x, t) dc were determined approximately
0

by non-overlapping ranges of .

The measurements described in fig. 6.1 provide, in effect,
evidence consistent with the above hypothesis. The measurements
showed that for similar initial conditions of the turbulence, but for
different decay times and different Reynolds numbers, the relation
(6.1.1) is valid. We may think of the different Reynolds numbers as
being produced by varying v and keeping / and u constant, in which

+ Spectrum curves derived from measurements of the turbulence generated
by a square-mesh grid show a fairly dominant peak at x=1/aM, where M is

the spacing of the bars and a is 8 number, of order unity, which increases during
the decay.
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case the result says that the rate of decay of energy is independent of
the viscosity. The rate of decay is identical with the rate at which
energy is transferred, by the action of inertia forces, from the energy-
containing range of wave-numbers to higher wave-numbers, so that
we have here a demonstration that changes in v, which will be
accompanied by changes in the motion associated with the dissipa-
tion range of wave-numbers, have no effect on the rate of transfer
of energy from the lower wave-numbers. If we write (6.1.1) in the
form du?

it again suggests (remembering that 4 is of order unity) that energy
transfer occurs chiefly as a result of inertial interaction of wave-
numbers of the same order of magnitude, since u® is the order of
magnitude of Reynolds stresses produced by the energy-containing
range of wave-numbers and u// is the order of magnitude of the rate
of shearing produced by that same range. Equivalently,

du? u?
Ti"‘ mE e AHI f_'
suggests that an eddy viscosity of order u/ is acting on the shear of
order u/l to produce a ‘dissipation’ of energy from the energv-
containing eddies to smaller eddies. It seems that the energy-
containing eddies determine the rate of energy transfer by their
mutual inertial interaction, and the larger wave-numbers adjust
themselves, according to the Reynolds number, in order to convert
this energy into heat at the required rate. The part plaved by
viscous forces in the motion at these high Reynolds numbers is
entirely secondary, and may be ignored for all except the high
wave-numbers at which the dissipation occurs.

It can now be argued that if the Fourier coefficients for high
wave-numbers are statistically independent of those for the energy-
containing range, the former must describe a motion which is in
statistical equilibrium since no time-dependence can be imposed
on them. Hence the hypothesis of this section can be regarded as
including the hypothesis of statistical equilibrium put forward in
§6.1. However, the latter is very plausible on its own merits and
makes a natural starting-point,
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6.4. The universal equilibrium

The considerations in the last three sections have prepared the
ground for a statement of the theory of the universal equilibrium—
termed the theory of local similarity by its originator, A. N. Kolmo-
goroff (19414, ¢), and also referred to as the theory of similarity of
the small eddies. We have seen that when the Reynolds number is
sufficiently large there is likely to exist a range of (high) wave-
numbers which is responsible for most of the viscous dissipation
and for which the Foutier coefficients are statistically steady,
isotropic and independent of the Fourier coefficients of the energy-
containing range of wave-numbers. We shall call this the equi-
librium range of wave-numbers. On what does the motion associated
with this equilibrium range depend? It is internally self-adjusting,
through the operation of inertia forces, and must depend only on
the parameters which describe external effects. These external
effects are just two in number: the removal of energy by viscous
dissipation over the whole, but chiefly at the upper end, of the
equilibrium range and the insertion of energy by inertial transfer at
the lower end of the range. The removal and insertion of energy
proceed at the same rate, viz.

€= — % dd—'f = zuf:x’E[x, t)dx,
which must be one of the external parameters. The removal of
energy by dissipation is distributed over the equilibrium range in
a way which depends on the viscosity v (as well as on the spectrum
function E(x, ), of course), which is also an external parameter.
No other parameters are needed to specify the equilibrium range in
view of the hypothesis of statistical independence put forward in
the previous section. Hence we have the hypothesis of universal
equilibrium:

“The motion associated with the equilibrium range of wave-
numbers is uniquely determined statistically by the parameters €
and ».

The reason for referring to the equilibrium of the large wave-
numbers as universal is now clear. On dimensional grounds the
effect of variation of the parameters ¢ and » can only be to change
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the effective length and time scales of the motion. Itis usually more

convenient to regard the length and velocity scales as variable, so
that we define the basic length and velocity parameters

) -(';—')'. v=(e). (6.4-1)
When all lengths are referred to # as unit and all velocities to v, the
motion associated with the equilibrium range of wave-numbers
thus has a universal statistical form.

In particular, the statistical quantities determined by the equi-
librium range are independent of the properties of the large-scale
components of the turbulence, and do not require the turbulence to
be accurately homogeneous. If the departure from homogeneity
has the same length scale as the energy-containing eddies of the
turbulence, as is usually the case inasmuch as the geometry of the
boundaries of the fluid determines both scales, the whole of the
argument of this chapter applies equally well. The motion asso-
ciated with the equilibrium range is still approximately homo-
geneous owing to the smaller size of the eddies concerned, and the
only difference in such a case is that the value of € to be used in
(6.4.1) is local in space as well as in titne. The hypotheses of this and
the previous section thus have an importance which goes beyond
our special case of homogeneous turbulence. If the hypotheses are
valid, all turbulent motions—decaying homogeneous turbulence,
flow in a pipe under pressure, flow in a boundary layer, turbulent
wakes, flow of a fluid with density stratification, etc.—are such that
at sufficiently large Reynolds number the motions associated with
the small eddies have a common statistical form. However,
sufficient experimental evidence relating to these different types of
turbulent motion is not yet available, so that this aspect of the theory
must be regarded cautiously.

In analytical terms, the hypothesis of this section is that at
sufficiently high Reynolds number the joint probability distribution
of the values of the Fourier coefficient dZ(x, f) at any n values of x
is independent of ¢ in form, is of isotropic form, and is universal
when v and 7 are used as velocity and length units, provided each of
the n values of « is sufficiently large. The necessary restrictions on
the Reynolds number and on x can be made a little more precise.
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We require the Reynolds number to be large enough for a statistic-
ally independent equilibrium range to exist, and it was seen in the
previous section that a necessary condition for this is x,<x,
(see (6.3.3)). The wave-number x; which marks the location of
strong viscous forces must be of the order of magnitude of 1/y (for,
if the theory is correct, there is no other length relevant to the
equilibrium with which 5 can be identified; in the sequel we shall
regard x; as being defined as exactly equal to 1/y). Hence the
Reynolds number must be large enough to satisfy

1 [e\d

= (3)
Replacing x, by 1/l and making use of (6.1.1), which was introduced
as an empirical relation and which is now an integral part of the

theory, we require
ﬂ * - !
(El_’.) s L&, (%l) > 1. (6.4.3]

This necessary condition is not far from being simply that the
Reynolds number of the energy-containing eddies should be large
compared with unity—in other words, that the motion associated
with the energy-containing range of wave-numbers should be
entirely dominated by inertia forces, as indeed we postulated at the
beginning.

Similarly, a necessary restriction on x for the above hypothesis to
be valid is k » x,, since the motion associated vith wave-number x
would not otherwise be statistically indepena :nt of the energy-
containing range. Our two conditions are thercfore

(9".“, KPKy=1]. (6.4.3)

The numerical interpretation of the symbol » must remain to be
determined experimentally, since our arguments have shown only
the necessity for certain ratios to be large; the determination of
sufficient conditions for statistical equilibrium, or for statistical
independence of the Fourier coefficients at two different wave-

+ Moreover, the Reynolds number og/v is identically unity, showing that

inertia and viscous forces are comparable for the motion for which v and ¥ are
& representative velocity and length.

1
Tﬂ(
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numbers, is a much more difficult problem which is unlikely to be
solved by the kind of argument used in this chapter.

With the aid of the universal equilibrium hypothesis we can
proceed to make predictions about any statistical quantities which
depend only on the values of the Fourier coefficients dZ(x, ¢) in the
equilibrium range of wave-numbers. The energy spectrum function
E(x, t) depends only on Fourier coefficients for wave-numbers with
magnitude «, so that provided the conditions (6.4.3) are satisfied we

have the prediction gy, 1) = ot E, (1), (6.4.4)
where E, is a dimensionless function of universal form. We note

that (6.4.4) is consistent with the original assumption that the
dissipation occurs wholly in the equilibrium range, since

:vJ.:x'E(x, t)de=¢
is satisfied identically provided the universal function E, satishies
[(rEsI=4. (6.45)

Direct measurements of E(x, t) at large values of x for turbulence
at very large Reynolds numbers would provide the best evidence for
the validity of (6.4.4) and of the equilibrium hypothesis. However,
Reynolds numbers (of turbulence generated by grids) such that
the energy-containing range and the dissipation range are widely
separated are beyond the limit attainable in most of the wind tunnels
used in laboratories, and measurements under the required condi-
tions have not yet been made. An indication of a trend towards the
prediction (6.4.4) as the Reynolds number is increased is provided
by some published measurements (Batchelor and Townsend, 1949)
of the dimensionless ratio

@:—T(WT f-x'E(x !}dxrx’E{x ) de

under different conditions. When the Reynolds number is large
enough for the equilibrium range to exist, this ratio is determined
by the function E, only and should therefore be an absolute constant.
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Six of the points in fig. 6.3} represent measurements for turbulence
produced by a grid, each of which is approximately independent of
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Fig. 6.3. Variation of dimensionless ratios with Reynolds number (after
Batchelor and Townsend, 1947, 1949; and Stewart, 1951).

decay of the turbulence; the other two points represent measure-
ments in the central plane of the turbulent wake behind a cylinder.
"I"he measurements are consistent with the validity of the theoretical

$+ The most appropriate abscissa for fig. 6.3 would be ul/v, but as measure-
menits of a length characteristic of the energy-containing eddies were not made,
A /v has been used. The relation berw een these Reynolds numbers for isotropic
turbulence is obtained from (5.5.6) and (6.1.1) as
ul N A { nA ]*

I |+ U S

and a roughlv similar relation will apply in the case of the turbulent wake.
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prediction, but higher Reynolds numbers are needed for a more
decisive test. The values of ul/v for the points plotted in fig. 6.3
range from about 10°4 to 540.

In the case of mean values which are defined as integrals (with
respect to x) of the Fourier coefficients dZ(x, t) (in contradistinction
to E(x, t) which depends on a local value of dZ(x, t) only), it is not
easy to decide whether or not these mean values are determined by
the equilibrium range of wave-numbers. A useful criterion in such
cases is provided by an attempt to express the mean value whollv
in terms of the difference of the velocities at two neighbouring
points. If the points are x and x + r, we have

u(x+, ) —u(x, t)=fe-*+=(e'=-=~:)dZ{u, f;  (6.47)

consequently a mean value formed from u(x+r, ) —u(x, ) weights
the Fourier coefficients with the factor ¢’ — 1 by comparison with
the corresponding mean value formed from u(x, t). When | x.r| <1
the weighting factor is approximately linear in x. It is exactly linear
in the integral giving the dissipation (which depends on the velocity
derivatives), so that if 7 is such that rx, < 1, the Fourier coefficients
for the energy-containing range of wave-numbers are suppressed
as strongly as in the expression for the dissipation. This is clearly a
sufficient condition for the mean value to be determined by the
equilibrium range (when the latter exists). Since the weighting
factor (e‘®-*— 1) is not small when « is of order 1/r, the above two
conditions for the equilibrium range, viz. x» &, and r <1/, are
consistent provided we give the same numerical meaning to the
sign > in the two cases.

An example of a measurable mean value which depends on
velocity derivatives only and which therefore comes within the
scope of the equilibrium theory is (¢u,/¢x,)* =1k;. At sufficiently
large Reynolds numbers the dimensionless ratio

ey /1T

GEA 0x,

should thus be an absolute constant. Measurements for turbulence
produced by a grid (Batchelor and Townsend, 1947; Stewart, 1951)

are shown in fig. 6.3, and are again consistent with, but do not go far
enough to confirm, the theoretical prediction.
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There is an obvious dualism of the Fourier coefficients and the
velocity differences, and the universal similarity hypothesis may be
formulated to refer to mean values formed either from the Fourier
coefficients dZ(x, t) for k» &, or from velocity differences

u(x+r,t)—u(x,t) for ”‘xl'

The results from one form of the hypothesis may usually be
recovered from those from the other form with the aid of a Fourier
transform relation. For instance, from (3.4.14) and (3.4.15),

[u(x+r,8)—ux, ) [} = 6u® — 2Ry(r, 1)
sinKr

" _r E(x, 1) (1——)dx. (6.4.8)

and if k7 €1 this integral depends on the equilibrium range of x
only (with an absolute error of the same order as that made in the
assumption that the dissipation integral does not depend on the
energy-containing range), in which case we have from (6.4.4)

' - i _sinyr/y
s -sm 0l =4 [ B0 (=527 dy  (649)
=v* x universal function of r/y.

This is exactly the prediction that would have been made had we
postulated that the joint probability distribution of the values of
u(x+r, f) —u(x, f) at any n values of r is universal when v and y are
used as units, provided each of the values of r satisfies r €/, as was
done originally by Kolmogoroff (19414).f Formulation of the
universal similarity hypothesis in terms of Fourier coefficients seems
to have the advantage that we are aided by the interpretation of

t Kolmogoroff, in fact, made the more general postulate (which is consistent
with the basic physical idess alresdy put forward) that the joint-probability
distribution of the values of u(x+r+s, t+7)—u(x, ) at any n values of (r, 7),
each of which satisfies r<€! and r<[/u, is universal when v and ¥ are used as
units, provided the Reynolds number is large enough. The (random) vector s
is equal to ru(x, t) and is introduced in order to remove the effect, on the
velocity difference, of translation of the small-eddy flow pattern by energy-
containing eddies during the interval r; the velocity difference is thereby
converted to a kind of Lagrangian, or particle, quantity. To make an equivalent
statement about Fourier coefficients it would first be necessary to make a Fourier
analysis of dZ{x, f) with respect to ¢ (which is carried out in the manner already
described, since dZ(x, 1) is approximately a stationary random function of ¢ when
xpx,). However, time interval mean values play no essential part in the
existing analysis of turbulence—except in problems of diffusion, which are
outside the scope of this work—and will not be considered here.
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Fourier components as degrees of freedom of the motion. On the
other hand, the velocity differences have a more immediate physical
meaning, and are usually more directly related to the observed
quantities.

A typical application of the universal equilibrium theory has
been made by Kolmogoroff (1949). With arguments like those
which lead to (6.4.4), he obtains information about the size of drops
of foreign liquid which exist in a fluid in turbulent motion under the
opposing actions of surface tension and the shearing produced by
the turbulence.

6.5. The inertial subrange

It has been postulated that the universal equilibrium will exist
when the Reynolds number islarge enough for the energy-containing
and dissipation ranges of wave-numbers to be widely separated;
presumably a sufficient condition is that x,;/x, should exceed some
critical (large) value. Since all the dissipation necessarily occurs in
the equilibrium range, this is equivalent to assuming that the
equilibrium range (when it exists) always begins at a wave-number
x such that x/x, has this critical value and extends to x=c0,
irrespective of where the dissipation occurs inthe equilibrium range.
Consequently, when the Reynolds number is large enough, there
may exist a considerable subrange, within and at the lower end of
the equilibrium range, in which negligible dissipation occurs.
Within this inertial subrange, the transfer of energy by inertia forces
is the dominant process. A necessary condition for the existence of
the inertial subrange is evidently that the Reynolds number should
be high enough for it to be possible to find wave-numbers x such

tht ‘.""“I!

!

We have seen (see (6.4.2)) that /g is of order (ul/v)!, so that the
condition (6.5.1) is equivalent to

(";')':» 1, (6.5.2)

e A = o e S e (%) , that is,

i.e. !-mrqi. (6.5.1)
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i
of order } (%') , will lie within the inertial subrange. The existence

of the inertial subrange requires the Reynolds number to be of the
order of the square of that required for the existence of the equi-
librium range, and is clearly unlikely to be realized in laboratory
wind tunnels.

When the condition (6.5.1) is satisfied, the motion associated with
the inertial subrange is statistically independent, according to the
hypothesis of §6.3, of both the energy-containing eddies and the
eddies responsible for the dissipation. The motion associated with
the inertial subrange is therefore determined uniquely when the
rate at which energy is entering it at the low wave-number end and
leaving it at the high wave-number end, viz. ¢, is specified. This is
a very restrictive consequence of our hypotheses, and enables us to
make very specific predictions about mean values determined by
the inertial range of wave-numbers. The universal functions found
for the equilibrium range generally are required to take a form, in
the inertial subrange, such that the parameter v disappears from the
expression for the mean value,

When the Reynolds number is high enough for the equilibrium
range to exist, we found the form v*yE (yx) (see (6.4.4)) for the
energy spectrum function E(x, t) in the range « » x,. If it is also true
that values of x such that x, € x €x; can be found, then for these
values of x the function E, must take a form such that v*pE (9x) is
independent of v. With the aid of (6.4.1) we thus find

E(x, t) = avtp(yx) ¥ = aclx—t (6.5.3)
for ko, € x €x,;, where a is an absolute constant.

If the universal equilibrium hypothesis is formulated in terms of
the probability distribution of velocity differences rather than
Fourier coefficients, there is likewise an inertial subrange if the
velocities are taken at points separated by an interval r such that

»ryy. (6.5.4)
For such values of r, the mean values formed from velocity
differences must depend on ¢ alone; for instance, we find that

i
[u(x+r, 1) —u(x, ) [T= fo* (5) = Bler)t (6.5.5)
for I» r» 1, where £ is an absolute constant.
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The predictions (6.5.3) and (6.5.5) are readily found to be
consistent from a consideration of the exact relation

[u(x+r, 1) —u(x, tﬂ’-.;'rE(x t) (1 -M) dx.

Provided r satisfies (6.5.4), the integrand is suppressed by the small
value of the factor (1 —-?) when « is of order 1/, and is sup-

pressed by the small value of E(x, ) when « is of order 1/y (since
E(x,t) falls off sharply at wave-numbers where viscous forces are
dominant). The value of the integral is therefore dominated by the
behaviour of the integrand for values of x such that x, €<x €x,, and
hence

[u(x+r, 1) —u(x,?) detac’ri (1 _ai::r) dx

o O G (6.5.6)

The relation between the absolute constants in (6.5.3) and (6.5.5) is
evidently

A=3T(}a = 482a. (6.5.7)

In the limit of infinite Reynolds number, in which case there are
some values of x and r such that x/k,, x4/, r/5 and [/r are all infinitely
large, the relations (6.5.3), (6.5.5) and (6.5.6) become exact.

As already mentioned, it is not likely that the conditions necessary
for these results to be valid will be realized in wind tunnels in
a laboratory. A grid with bars of diameter M/5+3 spaced at distance
M apart (in two perpendicular directions), placed in a uniform
stream of air with speed U, will generate turbulence whose
Reynolds number (based on the longitudinal integral scale) is

thyy L (L)' 2 UM
v 10\ 134 v

(Batchelor and Townsend, 1948a). Taking v=o0'15cm?sec?,

M =5 cm, U=2000 cm sec! (i.e. UM/v =67 x 10*), which are

values of M and U probably as large as can conveniently be used

in a laboratory wind tunnel, we find (1L, /»)! = 105, which might
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perhaps be large enought for the equilibrium range to exist, but is
not large enough to satisfy the necessary condition (6.5.2) for the
existence of the inertial subrange. Since, in addition, the functional
forms (6.5.3) and (6.5.5) will be detectable empirically only if they
are valid over an appreciable range of values of «, it is clear] that
we cannot look to laboratory experiments for confirmation of the
predictions about the inertial subrange.

If the universal equilibrium theory as a whole is valid—and the
evidence available at the present time 1s favourable—the predictions
about the inertial subrange should find many important applica-
tions in the fields of meteorology, oceanography and astrophysics.
Turbulent motions play a prominent part in these fields and the
corresponding Reynolds numbers are very large. In the case of
atmospheric turbulence, casual observation by eye suggests figures
in the neighbourhood of /=100 metres, ¥=0"§ metre sec™!, at
heights up to about 10 km, for at least some synoptic conditions
(these figures are also consistent with (6.1.1) and Brunt’s estimate§
that € is of the order of 5 cm? sec?). The corresponding value of
(ul/v)! is 7-8 x 10%, which is probably large enough to satisfy the
condition for the existence of the inertial subrange, the values of »
defining this range being given by

100 metres (or better estimate of [)» r> (¥/e)l =02 em,

Thus predictions about the inertial subrange are not only very
valuable on account of their specificness, but also because they
concern a range of eddy sizes which is likely to be relevant to many
of the measurable effects of turbulence. The same remarks apply to
turbulent motions encountered in astrophysics, as, for instance, in
the atmosphere of the sun. For all large-scale turbulent motions,
the theory described in this section can make very specific predic-
tions about any mean value which depends on eddies which are
sufficiently small compared with the energy-containing eddies. As

4+ Apparently not, according to some recent calculations by R. W. Stewart
(rgs51), for a slightly smaller Reynolds number; Stewart showed, from measure-
ments of the triple-velocity correlation u®k(r), that the rate at which all Fourier
components with wave-number magnitudes greater than &' were receiving
energy by inecrtial transfer was only about one-half the rate of loss by viscous
dissipation, for values of x* in the dissipation range.

! Despite many attempts in the past, including some by the author,

§ D. Brunt, Physical and Dynamical Meteorology, Cambridge University
Press, 1944, p. 286.
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already shown, the only analysis required is a dimensional argument.
Applications of the theory of the inertial subrange which have
already been made (not all of them being uncontentious) concern
the functional form of the covariance of the fluctuating tempera-
tures at two points (Obukhoff, 19495; Inoue, 1950b; Corrsin, 19515),
the functional form of the pressure covariance (Inoue, 1950a), the
rclative diffusion of two particles of fluid (Batchelor, 19504, 19524),
the functional form of the Lagrangian velocity covariance for
a single fluid particle (Inoue, 1950¢, 19514), and the rate at which
lines moving with the fluid are extended in length (Batchelor, 19506,
1952¢), none of which will be described here.

6.6. The energy spectrum in the equilibrium range

The theoretical determination of the energy spectrum function
E(«x, 1) over the whole of the equilibrium range of wave-numbers is
of considerable importance, particularly for turbulent motions set
up in the laboratory for which the inertial subrange is of negligible
extent. Conditions in the equilibrium range are comparatively
simple and offer us the best prospect of being able to take account
of the energy transfer quantitatively and to determine E(x,t). If
the spectrum shape can be determined, then, according to the
foregoing theory, it will apply to all kinds of turbulent motion,
whatever their large-scale properties, the only condition being that
the Reynolds number should be sufficiently large.

Several attempts to calculate the spectrum on the basis of in-
tuitive hypotheses about the transfer of energy have been made.
There are no measurements which support any of these theoretical
spectrum functions, and the hypotheses underlying them must be
regarded as very speculative, but they have some intrinsic interest
and will be described briefly in this section. It should be noted that
none of the hypotheses to be described are comsequences of the
universal equilibrium theory, and the failure of the former would
in no way compromise the position of the equilibrium theory. The
only reason for considering these hypotheses about the energy
transfer in the present chapter is that they are made possible by the
simple results deriveu from the equilibrium theory.

Since the turbulence in the equilibrium range of « is isotropic,
the dynamical equation for the energy spectrum tensor for large
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values of x is equivalent to the single scalar equation
PPUD) . T, 1) - 2B, 1); (6.6.1)

T(x, 1) is the contribution from inertial transter of energy and is
given by (see (5.5.19))
T(x, 1) = 4mx? J. Ofx,»’, 1) da’, (6.6.2)

where ( is the exchange function defined in terms of the mean
product of three Fourier coefficients by (5.2.7). We shall find it
easier to think about the equation (6.6.1) in the form (5.5.17), viz.

¢ E(x t)d«*
e = = S(x, ) -2 .L KE(x", ) dk", (6.6.3)
where S(x, 1) = r :_ ﬂP{r’.r’, f)dx’dx”, (6.6.4)

and P is related to Q by (5.5.18); S(«, ) is the net rate of transfer of
energy from wave-number magnitudes less than « to those greater
than « at time ¢.

According to the universal equilibrium theory we can ignore the
dependence on time of mean values determined by the equilibrium
range of wave-numbers, so that when x» x,, and for (ul/v)i» 1,

(6.6.1) reduces to T(x) = 2 E(x). (6.6.5)
Equivalently, we can replace g} I 'E(x'. t)d«” by the total rate of
o

decay of energy, —¢, since a negligible amount of energy is con-
tained in wave-number magnitudes greater than x. Hence (6.6.3)
becomes

- J" K"*E(x") dx” = S{x) = J: I ) P K 4K A
) ) (6.6.6)
If either (6.6.5) or (6.6.6) is to be solved for E(x), we must make

a plausible guess at the form of one of the transfer functions T(x)
and S(x). All the exact information which we have available for

guidance is contained in the above equations, together with (5.5.18)
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and (5.2.7). It will be sufficient to concentrate on (6.6.6), and all
that we know about the exchange function P(x’,x") is that it is
antisymmetrical in x” and «”, that (according to the independence
hypothesis of §6.3) it falls to zero when &' €x” or x"»«”, and that
it is related to the Fourier coefficients through (5.5.18) and (5.2.7).

From a mathematical point of view we should like to be able to
express P(x’, ") in terms of the spectrum function E, since equation
(6.6.6) would then suffice to determine E(x). In general P(x’, ")
will not depend only on the spectrum function, but within the
equilibrium range P(x’,x") will be determined by the function E
in the formal sense that the whole probability distribution has
a universal form. Our task is to postulate, intuitively, a suitable
approximate relation between P(x’,x") and the function E. The
relation between P(x’, ") and the Fourier coefficients dZ, given by
(5.5.18) and (5.2.7), suggests that P(x’,x") will depend on E(x’),
E(x") and E(| %’ —x"|), and possibly on «’ and «”.

Perhaps the closest approach to these requirements, while
retaining enough simplicity to make the equation (6.6.6) soluble, is
made by the expression put forward by T. von Kdrmdn (19484), viz.

P(x', k") = 2yx'™"FE(<)]* [E(x")F™ (' >&"), (6.6.7)

which is dimensionally correct for arbitrary values of m and n; the
number ¥ is an absolute constant. It is a serious criticism of this
expression that it does not contain E(| x' —x" |), which would seem,
according to (5.2.7), to have as strong a claim for inclusion as either
E(x’) or E(x"). A related defect is that the expression (6.6.7) changes
sign discontinuously at " =«", whereas (5.2.7) probably does so
smoothly ; however, this is more a defect of the degree of approxima-
tion and is less fundamental than that mentioned first. The ad-
vantage of the form (6.6.7) lies in the separation of the variables «’
and x”, which allows (6.6.6) to be reduced to

w[ KB k" =27 r K mE()]" A’ J‘ K n B A
(6.6.8)

We note that when « is in the inertial subrange, the left-hand side
reduces to the constant value ¢, and provided m and n have values
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such that the integrals on the right-hand side are convergent at the
fixed terminals, a solution is

§
BW)= () (m—gn+ 1)t (6.6.9)

(the restriction on m and n being that m — n + 1 <0). This result

is in agreement with that already found in (6.5.3), but it is in

consequence of dimensional arguments alone and the agreement

cannot be used as a test of the validity of (6.6.7). Provided the

integral J x"4-m[E(x")]i-" dk" converges as x —> a0, the solution for
0

very large values of « is of the form

E(k) ~ k—m-Dn-1) (6.6.10)

" . m-—2 ‘
(the condition for convergence then being that =< I) . This

asymptotic variation of E(x) according to a power law implies that
some of the higher order derivatives of the velocity correlation
function do not exist at r =0, and since

OPuy My c*u*f(r) _
&7 o =(—1)" [’“‘”é‘;i', 1. (p+g=23),

this in turn implies that some of the higher order derivatives of
u(x) do not exist in general. A proof that solutions of the Navier-
Stokes equation possess derivatives of all orders has not been given,
but one suspects that there is a real inconsistency.

An exchange function which is included in the formula (6.6.7)
and which can be given some support by intuitive arguments has
been put forward by C. F. von Weizsicker (1948) and formulated
analytically by W. Heisenberg (19484). This exchange function

corresponds to the case m= ~3, n=]}, and the corresponding
transfer function is

a K
S(x):y'l‘ x' 'i[E(x')]idx'f 2" E(k")dk”.  (6.6.11)
w 0

The idea underlying this postulate is that the process of transfer of
energy from large to small eddies is qualitatively similar to the
conversion of mechanical energy in a fluid into thermal encrgy
through the agency of molecular motion. This latter rate of transfer
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of energy is equal to the molecular viscosity multiplied by the mean-
square vorticity of the mass motion of the fluid. Hence we might
expect the rate of transfer from large to small eddies to be given by
the product of an effective viscosity produced by the motion of the
small eddies and the mean-square vorticity associated with the large
eddies, giving .
S(x) = N(x)".# 2" E(x") dx". (6.6.12)

1f each small element of the range of wave-numbers from "=« to
x’ =00 is to make a separate and similar contribution to the effective
viscosity N(«x) which depends on the energy density E(x’) and the
wave-number x” only, dimensional considerations show that

N = [ w1 d, (6.6.13)

which leads to the expression (6.6.11). The notion that the small
eddies act as an effective viscosity is plausible enough in general,
but it does not seem a suitable description of the mutual action of
eddies whose sizes are of the same order of magnitude. We have seen
earlier in this chapter that the transfer of energy across the wave-
number x occurs principally—at all events, when inertia forces are
dominant—as a result of interaction of Fourier components with
wave-numbers of the same order as x, so that the accuracy of
Heisenberg's expression for the transfer cannot immediately be
granted.
With the aid of (6.6.11), the equation (6.6.6) can be written as

uw[v+ y r K~ HE) dx'] J:::"E(x") de’, (6.6.14)

which shows the roles of the molecular viscosity and the viscosity
arising from the motion of the small eddies. The solution (pointed
out first by J. Bass, 1949) can be found readily by the device of
using .
H(x) = -Lx"E{x') dx*

as dependent variable, whence (6.6.14) becomes
€=2 [v+ 7rr' -1 d—If-(f—} ’] H(x).



130 THEORY OF HOMOGENEOUS TURBULENCE
On dividing by H(x) and differentiating, we find

dH(x) 47" [H(x))*
i & &

of which the solution is
2.3 (£
(H(x)] et + (:r) !

since H(x)—>¢€/2v as x—+c0. Hence

Bl =5 41 ) 1455 e 66as)

We note that when k € (37.8) ( (3—}') x,) , the spectrum reduces

to the expected form (6.6.9) for the inertial subrange. At the other

¢
extreme, when «» (%1:;) , 'the spectrum reduces, in agreement

with (6.6.10), to

E(x)~ (;’-";)'x-*. (6.6.16.)

The dissipation integral :vf:x'E(x)dx is determined principally
by the transition range of values of « lying in the neighbourhood of
x-(B&:)i; provided ¥ is of order unity, as is implied by the
physical basis of Heisenberg’s transfer expression, we have here
a confirmation of the interpretation (in § 6.4) that the wave-number
K4= 1/n=(e/v®)t marks the location of the range of strong viscous
forces.

Measurements of the spectrum function E(x) (more precisely,
of the one-dimensional spectrum function ¢(x), from which E(x)
can be obtained by means of (3.4.18)) at very large wave-numbers
have been made by Stewart and Townsend (1951) for the turbulence
generated by a square-mesh grid, at Reynolds numbers of the grid
up to UM/v=10% These Reynolds numbers are not sufficiently
high for the energy-containing range and the dissipation range of
wave-numbers not to overlap, so that an equilibrium range, as we
have defined it, does not exist under these conditions. Our hypo-
theses do not allow us to assume that the values of E(x) in the
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neighbourhood of x=x, are here independent of the energy-
containing range of wave-numbers, t so that a comparison with the
theoretical expression (6.6.15) is not wholly decisive. It was found
experimentally that the value of %‘g fell monotonically] at large
values of x, and at the highest wave-number covered by the

measurements, viz. x = 1-6x, it was about — 10. For no choice of
L
y is it possible to make the graph eyt (E) ¢(x) against ;, as
d

predicted by (6.6.15), bear even an approximate resemblance to the
experimental curve (which is shown in fig. 7.9). The measurements
thus do not provide support for Heisenberg's expression for the
energy transfer. A model of the turbulence which gives a better
representation of the measured spectrum at these very large wave-
numbers will be described in §7.4.

Another postulate about the transfer of energy which has an
intuitive physical basis is that put forward by A. M. Obukhoff (1941).
Obukhoff suggests that the transfer of energy across the wave-
number magnitude x can be considered as the consequence of
a Reynolds stress, produced by wave-numbers greater than « (the
micro-component of the turbulence), acting on a mean rate of shear
produced by wave-numbers less than x (the macro-component).
A natural assumption about the effective Reynolds stress produced
by the micro-component is that it is proportional to the energy
associated with wave-number magnitudes greater than x, i.e. to

rE(x') dx’. The contribution to the mean-square rate of strain from

wave-number magnitisdes less than « is 2 J' “¢IE(")dx”, 50 that
0

provided we cun use the root-mean-square rate of strain as a
measure of the effective mean (in the sense of an average over the

+ In fact, the measured spectrum curves E against x/x; had the same shape
st values of x/x, above about o6, for several times of decay and several grid
Reynolds numbers. The reasons, which lie outside the universal equilibrium
theory and will be considered in the next chapter (§ 7.4), can be used to justify
the comparison between the theoretical prediction (6.6.15) and measurements
at large values of x at Reynolds numbers which are not large enough for the
universal equilibrium to exist.

1 The same tendency can be detected in some measurements of the spectrum
function in turbulent Aow between two parallel planes made by J. Laufer (1950).
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micro-component) rate of strain on which the Reynolds stress acts,
the rate of transfer of energy becomes

S(x) = 7'[:E(x') dx’ [z j ::"E{x'} dx']i, (6.6.17)

where ¥ is an absolute constant. The equation (6.6.6) for the energy
spectrum function can then be solved by elementary methods
although the solution has not been given in closed form.

A criticism of the expression (6.6.17) is that it does not conform
to the exact expression for the energy transfer as a double integral
(see (6.6.4)), presumably because of the use of the root-mean-square
rate of strain as an approximation to the effective mean rate of strain
experienced by the micro-component. As with Heisenberg's
expression for the transfer, the underlying physical idea seems to
be suited more to the exchange of energy between distant wave-
numbers than to the more important case of exchange between
wave-numbers of the same order of magnitude. It is also clear from
the calculated spectrum that something is amiss with (6.6.17). The
function E(x) is found to be proportional to x~t in the inertial
subrange, as expected, and thereafter rises above the continuation
of this x~¥-curve until a value of x is reached at which the dissipation

integral :vj: x"*E(x")dx” has the assumed value ¢. Evidently the

spectrum function must be assumed to fall discontinuously to zero
at this value of x. None of these properties of the spectrum function
is found in the measurements; nor does it seem likely, from their
unreal character, that they will be.

It is clear that the rate of transfer of energy across wave-number
x is not a simple quantity, and it is unlikely that any simple physical
postulate like the above two examples, or like that suggested by
L. Kovasznay (1948), will describe it adequately. A proper solution
of the problem is awaited with great interest.



CHAPTER VII
DECAY OF THE ENERGY-CONTAINING EDDIES

The arguments used in the first five chapters are deductive on the
whole; they proceed from the basic equations governing the
motion of the fluid to conclusions which, directly or indirectly, may
be tested experimentally. However, in Chapter vi it became
necessary to reverse the order of the reasoning in part, and to
supplement the deductions from the basic equations with inferences
from measurements; by arguing both forwards and backwards it
was possible to obtain an understanding of one aspect of the
turbulence which, while it may later be found inadequate in one or
two minor respects, is unlikely to be wrong in general principle. In
this chapter the process of reversing the order of reasoning is carried
still further, and we shall be obliged to rely to a considerable extent
on the empirical evidence. As a consequence the certainty of our
interpretation of the measurements is much less and the theoretical
ideas described below still have the status of intuitive hypotheses
only.

7.1. The decay of total energy

One of the first measurements to be made in the turbulent
motion behind grids placed in a uniform stream was the decay of
the total kinetic energy of the turbulence. If the grid is composed
of bars or rods spaced regularly at a distance M apart in a square
array, it is found that &}, 4] and u§ become independent of position
across the stream at a distance of about 10M from the grid; our
theory is therefore concerned with measurements at greater
distances than this. It is also found that u}, u} and u} are approxi-
mately equal at this position, and remain so until the permanent
anisotropy of the biggest eddies becomes important in the final
period of the decay. The determination of the energy decay curve
thus requires only a single measurement at various stages of the
decay, that is, at different distances downstream from the grid.
Experimentally, the velocity component parallel to the mean flow
is the easiest to measure with a hot-wire anemometer, and it is to
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this component that the following measurements relate, even
though the symbol to be used to denote the root-mean-square
(viz. u) suggests that it is an arbitrary velocity component.

The earliest measurements of u at different stages of the decay
were a little confused by inadequate corrections for the errors
introduced by the finite length of the recording hot wire, by the
existence in the wind-tunnel stream of turbulence from sources
other than the grid, and by the inclusion of observations at positions
in the range 0 <x<10M. In recent years the measurements have
been considerably refined, and there is now general agreement
about the dependence of u on distance from the grid. It has been
found that the energy decays according to the simple law

utec (x - x,), (7.1.1)

for a certain range of values of the distance x downstream from
the grid, x, being a constant, while for larger values of x the
energy decreases more rapidly and ultimately obeys the decay
law (5.5.7) already established for the final period of the decay. The
period of validity of (7.1.1) will be termed the initial period of the
decay.

The law (7.1.1) has been established for a wide range of Reynolds
number of the grid (measured by UM/v) and for various shapes of
grid, and it is possible that it is universally valid for homogeneous
turbulence. As a sample of the measurements, fig. 7.1 shows the
variation of ¥ downstream from three grids of different shape; the
first was composed of circular rods of diameter M/5-33, spaced
a distance M between centres and lying in two perpendicular
directions (this is the type of grid normally used) (Batchelor and
Townsend, 1948a), the second was composed of circular rods of
diameter M/2-68 spaced a distance M between centres and lying
in one direction only, and the third was like the second but composed
of slats of rectangular section 1-9sM by o-21M (Stewart and
Townsend, 1951). In each case the relation (7.1.1) is satisfied, the
only variation in the three cases being in the constant of propor-
tionality (apart from small changes in x;).

If measurements are made with grids of the same geometrical
shape, it is found that the primary effect of using different values of U
(the stream speed) and of M is to vary the effective units of u and x.
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The relation (7.1.1) can thus be written as

Ul
;—i--ﬂ(f-—-;«}), (7.1.2)
where a depends principally on the shape of the grid and may vary
slowly with the grid Reynolds number UM/v. Part of the depen-
dence of @ on grid shape and Reynolds number is undoubtedly
accounted for by writing

ax 1/Cp,
® Double row of rods (M=2-54 cm, U=§43 em sec™")

X Single row of rods (M=1254 cm, U= 620 cm sec”")
T o ﬂaghm-fmm-ﬂmu-mmm}/
(Y

Ul x10°
T

I+ e
x-"'}'
- b
*’f
| (’t’
’!l"'
i i i 1 i | 3 . |
0 50 100 X em 150 200

Fig. 7.1. Decay of energy behind different grids (after Batchelor and
Townsend, 1948a; and Stewart and Townsend, 1951).

where Cp,.}pU? is the force which unit area of the grid exerts on
the stream in order to create the energy of the turbulence. In
addition, the geometry of the grid must determine the effective
unit of length for the turbulence. If we write

ur b

F'CT,(;{“}T:;) , (7.1.3)
the values of b for the three grids described above are found to be
101 (double row of rods), 53 (single row of rods), and g1 (single row
of slats), showing that if the effective unit of the distance x for the
double_row of rods is taken as M, the effective units for the other
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two grids are 1-g1M and 1-11M respectively, where M is in each
case the periodic interval; these figures are consistent with the
notion that the effective unit of length is measured by the average
size of the energy-containing eddies generated by the grid and that
the latter are determined roughly by the size (both across and parallel
to the stream) of the holes in the grid. For the commonly used
square-mesh grid the constant a in (7.1.2) has a value near 134
and x/M is about 10.

The constant x, in (7.1.3) determines the position of the virtual
origin at which the energy would be infinite, and is found to lie
between about sM and 15M for the square-mesh grid (cf. fig. 7.1),
the value varying slowly with UM/v. The positive value of x,
reflects the fact that a certain time elapses before the motion settles
down to the high rate of dissipation characteristic of turbulence.

It has already been remarked (see (5.5.7)) that a power-law
variation of «* has simple consequences for the quantity A. Since
the time of decay in the idealized homogeneous turbulence can be
identified with the quantity x/U in the experimental turbulence,

we have .
10V

A= —W-f-;-"(x-x.) (7.1.4)
i
from (7.1.1). Values of A? may be obtained from measurements of,
[ou,\? ut

say, (3.\:_ 111
above are shown in fig. 7.2. Lines of slope 1ov/U are also drawn in
the figure and the agreement with (7.1.4) demonstrates the general
accuracy of the measurements. The agreement also confirme, in
part, the assumptions that the experimental turbulence is homo-
geneous and that the Navier-Stokes equation (on which (7.1.4) 1s

based) is valid. We note the very interesting consequence of (7.1.1)

1+ These data supply the following estimate of the length % (defined in (6.4.1))
during the initial period:

() e () (5)

Taking x/M =20 and U=12500 cm sec.”!, we find that the smallest value of 9
likely to be encountered in wind-tunnel practice is of the order of o0t M,
Since 7 is a measure of the order of magnitude of the effective lower bound of
the range of eddy sizes, it is quite clear that the molecular structure of the
medium is irrelevant to the turbulent motion, as was claimed in § 1.2.

and values so obtained for the three grids described
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that the Reynolds numbers uA/v and (using (6.1.1)) u//v remain
constant during the initial period of decay. If the law of decay is
represented by u~*oc (x— xp)", uA/v and ul/v decrease during decay
for n> 1 and increase for n < 1.

o)

At em?
olp-
o=
® Double row of rods (M 117 cm, U < 643 cmaec ')
X Single row of rods (M 254cm, U - 620 cm sec )
© Single row of slats (M -1¥cm, U- 620 cmsec’)

e 1 1 ] 1 1
b % rom 190
Fig. 7.3. Variation of A* during the initial period (after Batchelor and
Townsend, 1948a; and Stewart and Townsend, 1951).

Data about the value of x/M at which the decay law (7.1.1) ceases
to be valid is rather meagre, since the wind tunnel must be incon-
veniently long—or alternatively M must be small, which increases
the errors of measurements with the hot-wire anemometer—for it
to be observable. The available estimates (Batchelor and Townsend,
1948 a) all refer to square-mesh grids and indicate that the duration
of the initial period (measured non-dimensionally) does not vary
greatly with the Reynolds number UM/v. The energy begins to
decay more rapidly than is predicted by the relation (7.1.1) at
a value of x/M which seems to lie between about 120 and 200, being
greater for higher Reynolds numbers; fig. 7.3 shows a typical set
of energy measurements (behind a square-mesh grid) extending
beyond the initial period of decay (Batchelorand Townsend, 1948a).
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The length of the transitional period between the initial and
final periods of decay depends markedly on the Reynolds number,
as might be expected, since the final period cannot occur until

10 X

0415 em
117 em X
154 em

e /
_

c 0 4+ & 'X

AL

/M

Fig. 7.3. Decay of energy during and beyond the initial period
(after Batchelor and Townsend, 1948a).

the absolute energy «* (in contradistinction to the relative energy
u?/U?) has fallen to a very low level. When UM|/v is as low as 650,
it has been found (see §5.4) that the final period of decay begins
at about x/M = 400, but at appreciably higher Reynolds numbers the
final period of decay is quite out of reach of experiments in a wind
tunnel.
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These strikingly simple facts about the decay of energy in the
initial period seem to call for a correspondingly simple explanation.
At the time of writing there is no explanation which is entirely
satisfactory, the difficulty with the suggested explanations being
that they predict too much, as we shall see in the following
sections,

7.2. Evidence for the existence of a unique statistical state of

the energy-containing eddies

The observation of an energy-decay law which has the same form
for different grid Reynolds numbers and for grids of different shape
suggests that the turbulence rapidly settles down to a state which
is independent—partly, if not wholly—of the conditions of its
formation. The same suggestion arises from the approximate
isotropy of the turbulence at an early stage of the decay, and from
the fact that the decay law is such as to leave the Reynolds number
of the energy-containing eddies constant during decay. We should
be tempted, in fact, to suppose that all the energy-containing eddies
rapidly adjust themselves to some stable statistical state of which
the decay law (7.1.1) is a particular manifestation. However, we
must bear in mind the warning of § 6.1, where it was pointed out that
if the characteristic time of the energy-containing eddies (considered
as a whole) is measured by [/u, the decay time of the turbulence is
of the same order, suggesting that there is insufficient time available
for an adjustment to a stable statistical state; tempting though the
supposition might be, it must clearly be approached with caution.
Perhaps, at the least, we can expect to find that there is a continuous
gradation from absolute equilibrium at the very largest wave-
numbers, through a kind of semi- or quasi-equilibrium at inter-
mediate wave-numbers, to a state of direct dependence on the initial
conditions at the lowest wave-numbers. The two ends of this range
have already been examined (in Chapter vi and § 5.3 respectively),
and we must now consider the intermediate wave-numbers. The
development of some kind of asymptotic statistical state will be
manifested as a trend towards a simple form of the spectrum and
correlation functions during decay—perhaps one that involves no
change in shape—so that it is to the experimental evidence con-
cerning these functions that we must look.
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In order to determine whether a statistical state of the energy-
containing eddies which is independent of the initial conditions is
set up during the initial period of decay, Stewart and Townsend
(1951)t have measured the two transverse velocity correlations,
Ry(o,r,0) and Ry(0,0,r), for the three different grid shapes
described in the previous section at the same stage of decay (the
x,~axis lies downstream, and the x,- and x,-axes are parallel and
perpendicular respectively to the rods making up the grid).
Fig. 7.4(a) shows a comparison of the correlation functions for the
double row of circular rods and the single row of circular rods, the
values of M for the two grids being so chosen that they gave
approximately the same turbulent energy at the same distance
downstream, and fig. 7.4(b) shows a similar comparison for the
double row of circular rods and the single row of rectangular slats.
(It was found that u} =uf = uf for each grid at the positions of the
measurements.) The measurements show that for values of r which
are not too large the transverse correlations are the same for all three
grids, and the transverse correlations in different directions are
identical for the two grids consisting of a single row of rods. Thus
for these values of 7, the velocity correlation has an isotropic form
which seems to be independent of the geometry of the grid. For
larger values of r the correlation functions are not the same for the
three grids, nor do they have an isotropic form for the two single-
row grids.] These differences at large values of r are found to persist
throughout the initial period. Stewart and Townsend have calcu-
lated the spectrum function E(x) from the measured correlation
functions (on the assumption that the turbulence is isotropic) and
find that the range of wave-numbers affected by the geometry of
the grid contains about one-fifth of the total energy.

These experiments suggest that the turbulence very quickly
settles down to a statistical state in which the distribution of about
809, of the total energy, distributed over the high wave-number
components, is approximately independent of the initial conditions.

t This paper is an account of a comprehensive set of measurements designed
to test the ideas considered in this and the preceding chapter, and as a con-
sequence we shall need to refer to it often,

1 Lack of isotropy at large values of r for the double row of rods is not
revealed by a comparison of Ry, (o, r, o) and R,,(0, o, r), but it does exist, as was
seen from the measurements described in § 5.4.
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Fig. 7.4. Transverse correlations for grids of different shape (from
Stewart and Townsend, 1951).
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It is not clear, at the present time, why the dependence of the
remaining 209%, of the energy on the initial conditions does not
cause the quantities i, uj and u} to be slightly unequal, nor is it
clear why the law of energy decay is affected so little by the initial
conditions. These points must be left open for a time; meanwhile,
we can examine more closely the stable statistical state to which
a large proportion of the energy evidently tends.

We may expect that a stable statistical state will be characterized
by a probability distribution that changes according to a simple
transformation during the decay. The simplest case is that of
a transformation involving a change in the velocity and length
scales alone. We already know that the total energy varies as
(x —x4)~! and consequently that the length [ (see (6.1.1)) varies as
(x—x)t (and likewise A—see (7.1.4)), so that if the energy-con-
taining eddies do change according to a linear transformation of this
kind during decay, the effective velocity and length units vary as
(x = xo)~# and (x — x )} respectively. This transformation, it will be
noted, is also the one which relates the probability laws for the
equilibrium range at different stages of the decay, for if the rate of
dissipation is such that ecc (x ~ x,)~%, the velocity v and the length
(see (6.4.1)) vary as (x—x,)~F and (x—x,)t respectively. Con-
sequently, for such a particularly simple case the whole of the
spectrum and correlation functions (except those parts determined
by the very smallest values of x for which there is little or no inter-
action with the remainder of the turbulence) preserve their shape
during decay.

An experimehtal examination of the degree of preservation of
shape of the statistical functions during decay has been made on
several occasions, although it is only recently that the assessment
of the results has provided a consistent picture. We may quote the
measurements of u¥f(r) at different stages of decay, for a square
mesh grid at UM/v = §300, made by Stewart and Townsend (1951)
(measurements of u?f(r) at values of r at which the effect of the
energy-containing eddies is dominant can be made more accurately
than can the corresponding measurements of the spectrum
function). Fig. 7.5 shows the results plotted in such a way that the
curves for different values of x/M would coincide if the only change
during decay were a change in the effective velocity and length
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units. Near r = o the curves necessarily coincide in order to conform
to the exact relation (3.4.7). It will be seen that at larger values of r
the use of 7/A as independent variable has clearly brought the curves
closer to coincidence, but that there are still significant differences
between the curves.

The meaning of the differences is perceived more readily from
the set of three-dimensional spectrum curves calculated from the

x/M
20

30

W 4+ 0 @ =

0 2 4 n 6 8 10

Fig. ¥.5. Correlation function at different stages of the decay
(from Stewart and Townsend, 1951).

curvesin fig. 7.5 with the aid of the transform relation (3.4.16) which
is valid for isotropic turbulence. The computed spectrum curves
are reproduced in fig. 7.6, again with u and A as the units of velocity
and length. The curves are now approximately coincident for
xA > 1, the differences being concentrated in the range of smaller
wave-numbers. This latter range, for which the spectrum does not
preserve its shape during decay, contains an appreciable fraction of
the total energy—of the order of 25 %—and is also the range for
which the motion is not isotropic in the case of grids composed of
rods extending in one lateral direction only, as already described.t
The measurements thus support the theoretical expectation that

t The computed curves in fig. 7.6 cannot be used to confirm the theoretical
deduction that E(x) = Cx* (where C is constant) st very small values of x, because

the assumption of isotropy on which the relation between figs. 7.5 and 7.6 is
based is not accurate st these small wave-numbers.



144 THFORY OF HOMOGENEOUS TURBULENCE

some at least of the energy-containing eddies, viz. those corre-
sponding to the smaller values of x, are dependent on the imtial
conditions throughout the initial period of decay. In view of this
dependence on the shape of the grid, it scems unlikely that an
analyucal deduction of the statistical properties of the motion
associated with these small wave-numbers could be given (except
for the continuity relations, valid near x =0, derived in § 5.3) or that
it would have general validity. "T'he measurements also confirm that
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Fig. 7.6. Spectrum function at different stages of the decay (computed
from fig. 7.5) (from Stewart and Townsend, 1951).

a considerable proportion of the energy does rapidly adjust itself
to a statistical state which is approximately independent of the
initial conditions and, also, apart from a linear transformation,
independent of the time of decay, and this part of the motion 1s
a fit subject for a general theory.

It is at first sight surprising that the stable statistical state which
a large proportion of the energy rapidly attains is such that the
varniation with time of decay is equivalent to variation of the effective
velocity and length units only, since this is the degree of simplicity
attained in the equilibrium range. Part of the explanation is that
although further new parameters (evidently one only) are needed
to specify the motion associated with wave-numbers too small to
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lie in the equilibrium range, the viscosity is not a relevant parameter
for these wave-numbers, so that there is both a loss and a gain in
simplicity by comparison with the equilibrium range. The remainder
of the explanation, viz. why only one new parameter—u and / in
place of € (oc #%/[)—should be needed to take account of the lack of
equilibrium of the energy-containing eddies is not yet clear.

The situation seems to be that at very large wave-numbers the
statistical functions vary only inasmuch as the velocity v=(re)! and
the length 9=(*/e)t vary,t while for a range of smaller wave-
numbers the statistical functions vary only inasmuch as u and / vary.
As we move out of the former range, in the direction of decreasing
wave-numbers, the parameter v becomes less relevant while u and /
become relevant separately and not simply in the combination
w3/l (cc €). For either of the two ranges separately, the spectrum and
correlation functions measured under different conditions can be
brought into coincidence by a linear transformation. Also, functions
measured at different stages of the decay can be brought into
coincidence over the two ranges together by a linear transformation,
because v/u and 5// remain constant during the initial period of the
decay. However, functions measured at different Reynolds
numbers——thatis, in effect, for different values of ¥—cannot be made
coincident over the two ranges together, but will form a singly-
infinite family of curves of different shape, one for each value of the
Reynolds number ul/v (or, equivalently, for each value of v/u or of
/1) which remains constant during decay.

Further evidence in support of this empirical picture is provided
by the data shown in figs. 7.7 and 7.8 and taken from the paper by
Stewart and Townsend (1951). Fig. 7.7 shows measurements of the
longitudinal one-dimensional spectrum ¢(x) (see (3.4.17)) at
different stages of the decay of turbulence generated by a square-
mesh grid, and at different values of the Reynolds number UM, ».
The measurements are plotted with v and 7 as effective velocity
and length units and show the approximate preservation of shape
during decay that has already been noted. (The lack of preservation

of shape at small wave-numbers is obscured in these measurements

4 We have not yet shown that these are the determining parameters when the
Reynolds number is not large enough for the existence of a universal equilibrium
of the kind described in the preceding chapter, but relevant evidence will be
presented later,
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by the scatter of the observations in this range.) The curves corre-
sponding to different Reynolds numbers are quite clearly not
brought into coincidence over the range of x in which most of the
energy lies. At higher values of x, however, the curves are more
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Fig. 7.7. Spectrum functions (one-dimensional) at different decay times
and different Reynolds numbers (from Stewart and Townsend, 1951).

nearly coincident, and Stewart and Townsend describe further
measurements which show that the coincidence becomes increas-
ingly good as « is increased still further. (This evident universality
of the spectrum shape at large values of x will need some further
consideration (see §7.4), since the Reynolds numbers are not large
enough for a universal equilibrium of the kind described in
Chapter vI to exist.)
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Fig. 7.8 shows, on the other hand, how the statistical functions
may be brought into complete coincidence over most of the energy-
containing range, provided the Reynolds number is not too small,
when u and / are used as units. For experimental reasons correlation
functions are more suitable for an examination of the energy-
containing eddies, and fig. 7.8 therefore shows measurements of
the longitudinal correlation u*f{r) for a square-mesh grid at different
Reynolds numbers but at the same value of x/M in order not to have
the diagram confused by the lack of similarity, during decay, of the
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Fig. 7.8. Adjusted correlation functions at different Reynolds
numbers (from Stewart and Townsend, 1951).

larger of the energy-containing eddies. The measurements were not
made at Reynolds numbers sufficiently high to separate the energy-
containing and dissipation ranges, but Stewart (see Stewart and
Townsend, 1951) has devised a useful method of plotting which
corrects for this departure from the desired conditions. The method
consists of using as the unit of velocity, not the measured u, but
u(1 + A)t, where A is the (small) fraction by which the measured
energy falls short of the amount which would be present if viscous
forces acted only at infinitely large wave-numbers. There is no
means of estimating A theoretically, but since it vanishes with »
we may suppose that to the first approximation it is proportional to
(UM|/v)-!, Stewart and Townsend made the equivalent assumption
that A2

A=a M (7.2.1)
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and found that the application of this correction, with a =61,
brought all the measured curves into approximate coincidence
except at large and at small values of r, as shown in fig. 7.8. (The
unit of length in the figure is M, to which / is proportional at a fixed
stage of the decay.) The coincident part of the curves is probably
a good approximation to the asymptotic form of the correlation
function at infinitely large Reynolds number.

7.3. The quasi-equilibrium hypothesis

Some theoretical ideas which help to ‘explain’ the observations
of the energy containing eddies have been put forward in the last
few years. These ideas are still tentative, and have not yet been
thoroughly clarified, so that their proper place in this book is after,
rather than before, a description of what actually happens. The
principal facts needing interpretation are the law of energy decay
in the initial period (7.1.1), and the statistical similarity, during
decay and for different initial conditions, including different
Reynolds numbers, of the Fourier coefficients over the range of
(high) wave-numbers containing a large proportion of the total
energy. The notion of ‘self-preservation’ of the statistical functions
during decay is of course not new in the, theoretical literature and
has been introduced by many authors, in particular by T. von
Kirman (19374, 1948a), v. Kdrmdn and Howarth (1938), v. Kdrmén
and Lin (1951) and H. Dryden (1941, 1943). The assumption of
similarity of shape of the statistical functions during decay in the
earlier works was principally a mathematical device, used to enable
definite results to be obtained. For instance, the solution (5.4.8) for
the longitudinal correlation function in the final period of decay was
given in this way (for isotropic turbulence) by v. Kérmén and
Howarth (1938) as one of an infinite family of self-preserving
solutions. To find such solutions has been one task; to determine
the conditions under which they can and do provide a correct
description of the turbulence is another, It is this latter task which
has engaged much attention in the last five years, but even so most
of the established results are negative, and our positive results still
rest insecurely on vague intuitive arguments (vague for most of us—
clear and precise for the inspired few!).

The principal contribution to the understanding of the observed
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similarity during decay has been made by Ilcisenberg (194858); he
framed his arguments in terms of the special form of the cnergy
transfer described in §6.6, but in their general aspects they are
essentially similar to those used hereunder. We have seen that
the hypothesis of a universal equilibrium of the motion associated
with large wave-numbers is self-consistent and plausible, and finds
some experimental support. Admitting the validity of this hypo-
thesis, we can go on to consider the nature of the motion at wave-
numbers a little lower than those in the equilibrium range. The
properties of thesc components of the turbulence are affected
directly by the time-dependence of the turbulence as a whole, in
such a way, we may expect, as to convert the absolute equilibrium
which exists at higher wave-numbers into a moving or quasi-
equilibrium. A quasi-equilibrium of a system of interacting degrees
of freedoin is an asymptotic state which is as near to equilibrium as
is consistent with a finite rate of change of total encrgy of the
system. T'he simplest quasi-equilibrium, that is, the kind that will
occur at wave-numbers close to, but outside, the equilibrium range,
will require for its statistical specification one parameter extra to
those needed for the equilibrium range; this paramcter will
presumably describe in some way the stage of the decay of the
turbulence. The division between the ranges of equilibrium and
quasi-cquilibrium is not sharp, of course, and as suggested earlier
there will be a continuous variation from conditions of absolute
equilibrium at the highest wave-numbers to conditions of complete
permanence at the lowest wave-numbers. The essential point of the
argument is that the higher the wave-number of the component
of the motion, the smaller is its characteristic reaction time; the
reasons for this are admittedly not rigorous, and are based partly
on the form of the equation of motion, which cquates the time-
derivative of the velocity to the sum of length-derivatives, and
partly on casual visual studies of turbulent motion.

The choice of the extra parameter needed to specify mean values
associated with the quasi-equilibrium is suggested strongly by
known solutions of the hydrodynamical equations in cases of
unstecady motion. When, in these latter problems, there is no
length involved in the motion permanently (e.g. through the
boundary conditions), it is frequently found that the solution tends



150 THEORY OF HOMOGENEOUS TURBULENCE

asymptotically to a function of x/(vt)! whatever the form of the initial
conditions. Speaking very generally, the initial conditions produce
‘free oscillations’ which are soon damped out, and the remaining
‘forced oscillations’ are produced by the boundary conditions on x;
if these boundary conditions supply no natural length unit, (1)}
becomes the single length unit for the velocity distribution. Such
a velocity distribution then preserves its shape during the decay.
These similarity solutions occur chiefly in problems in which the
non-linear term in the equation of motion is zero or does not play
an important part (as, for instance, in the case of fluid bounded by
an infinite plane in steady motion, parallel to itself, the initial
distribution of velocity in the fluid being arbitrary); the new
suggestion is that this type of asymptotic solution will occur in cases
in which the non-linear term has no particular form but operates
statistically to transfer energy between the ditferent wave-number
components. It has yet to be shown that the boundary conditions
insert no length scale into the motion associated with the quasi-
equilibrium, but this is certainly suggested by the observed decay
law which, if extrapolated backwards, is consistent with a turbulent
motion of infinite energy and sero length scale at the origin of
time.

We are thus led to the following quasi-equilibrium hypo-
thesis:

‘When the Reynolds number is large enough for a universal
equilibrium to exist at high wave-numbers, the motion associated
with this equilibrium range and the neighbouring range of smaller
wave-numbers is uniquely determined statistically by the param-
eters », € and ¢ (¢ being measured from the virtual instant at which
the turbulence has infinite energy).’

If our intuitive ideas about the quasi-equilibrium are correct, the
influence of the parameter ¢ will diminish as « increases, giving
a gradual transition to the conditions of the equilibrium range.

An immediate consequence of this hypothesis is that the dimen-
sionless ratio €f2/v must be constant ( =R, say) during the decay,

+ This restriction on the Reynolds number is not made to ensure the existence
of some kind of equilibrium and of some kind of quasi-equilibrium, but to ensure
that their properties are relatively simple. Some relaxation of the condition on

the Reynolds number could be made, as has been pointed out by 8. Goldstein
(1951); see also § 7.4.
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for there is no way in which it could depend on ¢ alone. Hence,

du? R
TI:- _i_“fl (7.3.1)

where R is determined by the initial conditions of the turbulence.
In particular, for turbulence generated by passing fluid at speed U
through grids of similar shape and of characteristic length M, R
must be determined by the Reynolds number UM/v alone. The law
of decay follows from (7.3.1) as
iRv
T (7.3:2)
where #, is an arbitrary constant. This decay law is consistent with
the observed decay law (7.1.2) (assuming that the latter is equally
valid at Reynolds numbers larger than those used in the experi-
ments), when ¢ is replaced by the equivalent quantity (x—x,)/U,
provided that uf <.t
The physical interpretation of the constant u, is obscure. If the
quasi-equilibrium is closed to the supply of energy from smaller
wave-numbers (in which event it would certainly be easier to think
about) we could regard §uf as the energy (per unit mass of fluid)
which lies outside the quasi-equilibrium and which necessarily
remains constant. On this interpretation, the energy of any uniform
translation of the fluid which exists contributes to both $u} and
§u?; likewise Fourier components with very small wave-numbers
have very little interaction with larger wave-numbers (see § 5.3), and
their contribution to ju} would remain approximately constant.
The empirical result that v} €u® seems then to suggest that all
but a negligible fraction of the energy takes part in the quasi-
equilibrium. However, we have seen that there is strong evidence
from the measured spectrum and correlation functions that at least

1+ The meaning of the constant R emerges from a comparison of (7.3.2) and
(7.1.3): R

wetfeon (-2 0w

showing that R is a direct measure of the Reynolds number of the grid. For
a square-mesh grid we have
R.L(EE‘!),, : (!'i')
o5 )2 (5)
if { is taken as the longitudinal scale L,.
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25 %—certainly not a negligible fraction—of the energy is asso-
ciated with motion which is dependent on the initial conditions and
which is therefore excluded from a quasi-equilibrium. This illus-
trates the difficulty which faces theories of similarity during decay;
the need for consistency with the observed decay law makes it
difficult for them to avoid predicting too much.

However, it is not necessary to assume that the quasi-equilibrium
is closed: indeed, it is difficult to see how it could be if it does not
contain nearly all the energy of the turbulence. Both C. C. Lin
(v. Kdérmén and Lin, 1951) and S. Goldstein (1951) regard as
natural the assumption that the quasi-equilibrium or similarity
includes all wave-numbers from which a contribution to ¢, i.e. to

J:H‘E(x) dx, is made, but may exclude a range of (smaller) wave-
numbers from which an appreciable contribution to total energy,
i.e. to EE(K) dx, is made. (It should be noted that both authors

have in mind Reynolds numbers which are not necessarily so high
that a universal equilibrium exists, so that the dissipation and
energy-containing ranges may overlap.) There are no mathematical
inconsistencies in this picture, but the physical basis for the certain
inclusion of the dissipation within the similarity range is not clear,
and the observation that u, is effectively zero (during the initial
period) is left unexplained. The closeness of the observed decay law
to u*cc ! may be due to the fact that, given that a large proportion—
of the order of three-quarters—of the energy is observed (see fig. 7.5)
to lie within the range of similarity (for reasons yet to be found; the
a priort estimate would have been smaller) and decays as t-', the
rate of decay of the remaining, non-similar, portion of the energy
could vary a little with the initial conditions without causing
a detectable departure from the law w?cac t-! for the total energy.
A complete understanding of the matter must wait on future work.
The existence of a certain proportion of the energy outside the
quasi-equilibrium gives us a clue to the reason for the termination
of the decay law (7.1.1) after a certain time. If the quasi-equilibrium
embraced all the energy, the similarity laws and the decay law
7.3.2) (with u} € u?) would continue for indefinitely large values of 2.
The same result would hold if the quasi-equilibrium took energy
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from lower wave-number components at a rate roughly propor-
tional to £-'. However, this transfer across the boundary of the
quasi-equilibrium is likely to occur at the required rate only if the
distribution of energy outside the quasi-equilibrium is suitable, and
it is a reasonable guess that the distribution cannot remain suitable
for very long. The length unit of the motion associated with the
quasi-equilibrium is increasing as ¥, while the larger length scales
of the motion outside the quasi-equilibrium are increasing more
slowly (we have seen that for sufficiently small values of x there is
no change of the spectrum with time, and the corresponding parts
of the spectrum curves in fig. 7.6 would be made coincident if the
abscissa were thc instead of ¢8x). A continuous adjustment at the
boundary is thus necessary, and since the distribution of energy
outside the quasi-equilibrium is not maintaining its shape during the
decay there can be no permanent relation between the two
regions.

Other consequences of the quasi-equilibrium hypothesis concern
the changes in the spectrum and correlation functions during decay.
For instance, the spectrum function E(x, #) must be of the form

3

I—
E(x,t)=v*)E, (uh‘.i, ) ; (7-3-4)

where v and # have the same meanings as before (see (6.4.1)), and
E,. is a universal function of two variables; x must be suitably
limited at the lower end in order to lie within the quasi-equilibrium
range but may take indefinitely large values. It has already been
pointed out that ef2/v has the constant value R during decay and
that for geometrically similar grids R is directly proportional to
UM |v. Hence (7.3.4) agrees with the observation that the spectrum
makes a linear transformation over the equilibrium and quasi-
equilibrium ranges together during decay, but has a different shape
for different grid Reynolds numbers. Since yoc tf and voc 4 when
e t2, the predicted change in the effective length and velocity
units during decay is in accord with observation, and (7.3.4) can
equally well be written as

. U A
E(x,r)=u-AEq,(M, IM] or u*AE.,,(_Ax,F;), (7-35)
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as was inferred from the experiments, or, equivalently, as

E(x, ) = wE, (b:, H;”f) , (7.3.6)

where [ is a length characteristic of the energy-containing eddies
which lie within" the quasi-equilibrium range. The effect of
viscosity in all these expressions is confined to the equilibrium range
(and may, if the Reynolds number is large enough, be confined even
more narrowly, as described in §6.5), so that provided kk is not » 1,

(7.3.6) reduces to E(x, t) = wME (Ix). (7:3-7)

In other words, the family of curves E,, against Ik obtained for
different values of the parameter UM/ tends to a limiting form, as
UM|v - o, for values of x within the quasi-equilibrium range but
outside the equilibrium range; this has already been inferred from
measurements of the correlation function when plotted as in
fig. 7.8.

The reduction to the conditions of the equilibrium range when x
is very large can be understood from the dynamical equation (5.5.11)
for the spectrum function. In view of (7.3.5) this equation becomes

dA 0E, 1
(tl; df “jg d‘ a mnl‘,f)—sztﬁ'ﬂ,
that is ~4E, +1:aE"‘ :A x, t) - }22E,,, (7.3.8)

where 2= Ax. When z is very large, the term 3*E_, will always be
large compared with the first term on the left side and will, for most
functional forms of E,, be large compared with the second term on
the left. Only in cases in which E,, decreases with z as rapidly as
e-=*' (2 constant) will the terms on the left side fail to be negligible.
We cannot exclude such cases rigorously, but the effect of the non-
linear transfer of energy is to spread the energy as widely as possible,
and they may be rejected provisionally as being incompatible with
finite positive values of T\(x, t). Then the left side of (7.3.8) may be
neglected, giving the dynamical equation appropriate to the
equilibrium range. More precise information about the location of
the boundary between the equilibrium and quasi-equilibrium
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ranges cannot be obtained without making assumptions about the
functional form of the transfer term.

When « is very small, we know from the exact analysis of § 5.3 that
the transfer term T, t) and the viscous term — 2vx*E(x, t) are both
of smaller order than the term 2E(«, t)/t in the dynamical equation
(6.6.1). Consequently, if the similarity relations of the quasi-
equilibrium were to extend to very small values of x (a hypothetical
case only), only the terms on the left side of (7.3.8) would survive
and the required form of the spectrum there would be

Eqecx Ax, (7.3:9)
that is, from (7.3.6), E(x, t)oc utA%, (7.3.10)

-which is independent of 2.+ We found in §5.3 that the continuity
condition required E(x, ) to vary as x* near « =0, so that quite apart
from the inability of the very big eddies to take part in a quasi-
equilibrium based on inertial exchange of energy, their distribution
of energy is necessarily different from that required by a quasi-
equilibrium.

7.4. The equilibrium at large wave-numbers for moderate

Reynolds numbers

The universal equilibrium theory described in Chapter vi was
arrived at from a consideration of the nature of turbulent motion at
very large Reynolds number. When the Reynolds number is so
large that the energy-containing range of wave-numbers and the
range in which the viscous dissipation occurs are widely separated,
it was found possible to postulate that the motion associated with
large wave-numbers has a universal statistical form determined
uniquely by the parameters v and €. This possibility rests on the
notion that the motions associated with widely separated wave-
numbers are statistically independent, so that the only connection
between the equilibrium range and the remainder of the turbulence
lies in the inertial transfer of energy across the spectrum at a rate €.

t+ The transformation of the E against « graph represented by (7.3.5) is
equivalent to a stretching of both ordinate and abscissa by a factor proportionsl
to t! (as in fig. 7.6); if this transformation is to make the spectrum curves at
different values of f coincident, the spectrum curves are necessarily linear near
the origin, with the same slope.
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When the Reynolds number is not very large, so that the energy-
containing range and the dissipation range are not widely separated,
we cannot postulate that these two ranges are statistically inde-
pendent and a universal equilibrium is not to be expected. Never-
theless, if it is true that Fourier components with widely separated
wave-numbers tend to be statistically independent even when one
of these wave-numbers lies beyond the dissipation range, there will
always be some large wave-numbers for which the associated
motion is statistically steady and independent of the mechanical
agencies which generated the turbulence. Provided the inertia
forces are strong enough to transfer energy to wave-numbers
K 3 K, some kind of equilibrium theory should apply to these large
wave-numbers, irrespective of whether all the viscous dissipation
occurs in this range. The difficulty about a theory appropriate to
these moderate Reynolds numbers is that we do not know what
parameters determine the motion associated with this new equi-
librium range of wave-numbers. For large Reynolds numbers there
is a clear guide to the choice of parameters in the fact that the rate
of transfer of energy into the equilibrium range is . It might
perhaps be speculated that the determining parameter at moderate
Reynolds number is the contribution to the rate of dissipation from
Fourier components with wave-numbers lying within the equi-
librium range. However, this begs the question a little, since we have
no means of predicting what fraction of the total dissipation occurs
in the equilibrium range, and it seems an unsuitable hypothesis in
view of the fact that there is no sharp boundary dividing the
equilibrium range from smaller wave-numbers; moreover, the
speculation receives no support from measurements. It seems
unlikely that any theory which considers the equilibrium range, as
such, in isolation from the remainder of the motion is likely to be
successful at moderate Reynolds numbers.

However, we can obtain some help from the observations of the
energy-containing eddies in the turbulence generated by grids,
described earlier in this chapter. It was shown there that, apart
from a range of small wave-numbers containing about 259, of the
energy, the turbulence maintains a statistical similarity described
by the three factors », € and ¢ during decay. Moreover, this simi-
larity was found to exist over a wide range of Reynolds numbers
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lower than that necessary for the existence of a universal equilibrium.
The absence of any severe restriction on the Reynolds number in
the case of the quasi-equilibrium is not altogether unexpected,
because it is not an essential part of the ideas set out in the preceding
section that all the dissipation should occur in the equilibrium
range. Only a small extension of the ideas is required to lead us to
the hypothesis of a quasi-equilibrium at moderate Reynolds
numbers (we should probably need to exclude Reynolds numbers
so low that some of the dissipation occurs outside the quasi-
equilibrium range), as Goldstein (1951) has emphasized. Con-
sequently if it is truc that a quasi-equilibrium always merges into
an equilibrium as x -»oc, the parameter ¢ becoming less and less
relevant—some relevant evidence is presented below—we have
the conclusion, three parts empirical, one part analytical, that an
equilibrium determined by the parameters v and € exists at moderate
Reynolds numbers. Presumably the equilibrium which exists at
moderate Reynolds numbers will be identical with part (at the high
wave-number end) of the universal equilibrium which exists at
large Reynolds numbers.

Not many measurements of the spectrum function at large values
of x in turbulence generated by grids have been made, so that the
above ideas must remain tentative. The only available measure-
ments seemn to be those of Stewart and Townsend (1951), made at
Reynolds numbers UM/v=2625, 5250 and 10,500, and already
described partially in fig. 7.7. The different (one-dimensional)
spectrum curves at different Reynolds numbers in fig. 7.7 seem to
be coming together as x— oo, but the spectrum function has small
values in this region and small differences between the curves could
be hidden. Stewart and Townsend therefore measured the one-
dimensional spectra of ow,/fx,, ?%,/0x} and ®u,/cx]—effectively
giving measurements of the functions x%¢(x,?), x*(«,t) and
k8d(x,t)—and compared them at the above three Reynolds
numbers. It was found that there were detectable variations in the
functions x¥¢(x, 1) and x*¢(x, t) at the different Reynolds numbers
when plotted in the manner of fig. 7.7, but not in «%p(x, t), the
measurements of which are reproduced in fig. 7.9.+ The value of

+ An interesting observation was that the measured values of «*¢(«x, 1) at
distances of 30M and 4oM from the grid, for all Reynolds numbers, fell below
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« at which the spectra at these different Reynolds numbers can be
said to coincide is not well defined, but the figures make it clear that
the coincidence improves as x —+co. Hence they support the hypo-
thesis that for turbulence generated by a grid at moderate Reynolds
numbers the motion associated with a range of sufficiently large
wave-numbers has a universal statistical form which is determined
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Fig. 7.9. Spectrum function (one-dimensional), at high wave-numbers
for different Reynolds numbers (after Townsend, 19515).

by v and € and which is presumably identicalt with part of the
equilibrium which exists at large Reynolds numbers.

It should be noted that there are as yet no grounds for supposing
that the motion associated with the equilibrium range has the same

the curve shown in fig. 7.9. The interpretation is that at the stage represented
by x = 40M the decay was not quite far enough advanced for the inertial transfer
of energy to have built up the energy at these large wave-numbers to its equi-
librium level.

+ Which is the reason why it is permissible to use measurements at moderate
Reynolds numbers to check theoretical predictions about E(x, 1) at the larger
values of x within the universal equilibrium range, as was done in § 6.6 in
connexion with Heisenberg's postulated form of the energy transfer function.
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statistical form for all types of turbulent motion at moderate
Reynolds number. The dependence of the equilibrium range on »
and € at moderate Reynolds number, as described above, is essen-
tially a consequence of the existence of a quasi-equilibrium at lower
wave-numbers, which is probably a circumstance peculiar to
decaying homogeneous turbulence. In the case of, say, statistically
steady turbulent flow through a pipe 1t is very probable that the
energy-containing eddies are all influenced by the boundary
conditions of the motion, so that at moderate Reynolds numbers
for which the energy-containing range and dissipation range are
not widely separated the dissipation ¢ does not occur wholly within
a range which is characterized by the same statistical conditions as
in the case of grid turbulence. Under these conditions the parameter
¢ 18 unlikely to have the same significance in the two cases. The
equilibrium at moderate Reynolds numbers is probably ‘universal’
for grid turbulence alone, unlike the equilibrium at large Reynolds
numbers.

A simple model of that part of the turbulent motion represented
by Fourier components with wave-numbers beyond the dissipation
range has recently been proposed by A. A. Townsend (1951 5), and
since it is, in effect, a postulate about the equilibrium which exists
at these very large wave-numbers at all Reynolds numbers it can
appropriately be described here. Townsend's idea is that the
mechanical equilibrium between inertial transfer and viscous
dissipation, at wave-numbers x3 &, 18 a reflexion of a balance
between the tendency for the straining motion (which arises from
wave-numbers of the order of ;) to extend and concentrate vortex
sheets or lines and the tendency for viscosity to ditfuse and weaken
them. On this basis he calculates the form of E(x) for x» «,; from
a random distribution of these elementary, stationary, small-scale
velocity fields. Consider first a part of the flud where the local
relative motion consists instantaneously of principal rates of strain
a, —a, o(a > 0) in the directions of the x,-, x,- and xg-axes respec-
tively. T'hen any small perturbation (for which quadratic terms can
be neglected) to this vorticity distribution will tend to be distorted
by the plane straining motion into a vortex sheet in the x,-, x4-plane,
with the perturbation vorticity in the direction of the x,-axis. If
the basic straining motion remains approximately steady for long



160 THEORY OF HOMOGENEOUS TURBULENCE

enough (the necessary time being smaller for higher wave-number
components of the perturbation), the velocity distribution of the
perturbation tends asymptotically to

dug ax3 _
a-!=wﬂcxP|:—-z—l; y Uy =8g=0, (7.4-1)
representing a vortex sheet of finite thickness, where w, is a measure
of the strength of the vorticity perturbation. Similarly, a basic
straining motion with two positive principal rates of strain converts
(asymptotically) a vorticity perturbation into two superimposed
vortex sheets, and one with two negative principal rates of strain
converts a perturbation into a vortex line,

We now imagine a large number of such asymptotic vorticity
perturbations to be distributed randomly (with respect to both
position and orientation) throughout the fluid, with the approxima-
tion that the basic straining motion has the same intensity every-
where. It is then a simple matter to calculate the spectrum function
describing the perturbations; for the above case of a plane straining
motion the one-dimensional spectrum function is found to have the
same form at large values of x as

s09=1 [ a-myexp| -2k lam (42)

where A is not determined by the model. 1f the value of « is taken as
(€/4v)}, so that the rate at which the energy of the straining motion is
being dissipated by viscosity is ¢, the function x%¢(x) as given by
(7-4.2) has the shape shown in fig. 7.9. Similar calculations for
a straining motion which is symmetrical about an axis lead to the
other curve shown in fig. 7.9; the fact that the difference is so slight
suggests that the shape for an arbitrary straining motion would not
be very different. Both of these curves in fig. 7.9 involve a single
unknown parameter, viz. a scale factor of the ordinate, like A4 in
(7.4.2), which has been chosen to place the maxima of the curves at
about the same value of x%¢(x) as for the experimental points. The
value of x/x,; at which the maxima occur involves no disposable
parameters, and the agreement with experiment therefore seems to
be remarkably good. However, it should be kept in mind that the
assumption that the straining motion is spatially uniform does not
permit us to use the model to get information about wave-numbers
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in the dissipation range, and since the experimental variation of
x¥@(x) with x shows a maximum at about x =0-2x,, it 1s only for
wave-numbers large compared with this value that the model is
relevant. The model also receives some support from the observed
spottiness of the spatial distribution of high-order derivatives of
the velocity (see §8.4).

The value of the model is that it supplies a plausible picture of
the equilibrium at very large wave-numbers, and in particular of
the way in which energy is transferred to these large wave-numbers.
The mechanism of the transfer of energy is here quite different from
the eddy friction mechanism proposed by Heisenberg; mathe-
matically this difference leads to the transfer of energy to very large
wave-numbers being proportional to the root-mean-square of the
total vorticity with Townsend’s model, but to the mean-square
with Heisenberg's expression for the transfer. It should also be
noticed that according to the model the Fourier components with
very large wave-numbers x ( » ;) are not statistically independent
of the Fourier components with wave-numbers of order x; from
which they receive energy, since the straining motion produces
a definite alinement of the vorticity perturbation; this is not
inconsistent with the ‘disorder’ hypothesis of §6.3, since for the
latter to apply at least one of the two Fourier components concerned
must be dominated by inertia forces. On the other hand, leisen-
berg’s transfer expression assumes implicitly (in virtue of the
representation of the transfer as a friction process) that the pair of
Fourier components involved in any exchange of energy are
statistically independent; since the Fourier components in the range
in which E{x) is found to vary as k7 reccive their energy from wave-
numbers of order x,, the assumption of a friction process is here
going beyond the disorder hypothesis as we have formulated it.

7.5. Heisenberg’s form of the energy spectrum in the quasi-
equilibrium range
The intuitive hypothesis about the form of the transfer term in
the dynamical equation for the spectrum which v. Weizsicker and
Heisenberg put forward has already been described in §6.6.
Heisenberg originally used this hypothesis to deduce the form of
the energy spectrum in the equilibrium range of wave-numbers.
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When it was realized later that the experimental results supported
the idea of a stable statistical state of some, at least, of the energy-
containing eddies during decay, Heisenberg (1948 5) used the same
hypothesis about the transfer term in order to determine the energy
spectrum in the quasi-equilibrium range of wave-numbers. We saw
in §6.6 that the computed spectrum in the equilibrium range was
not in agreement with experiments, so far as the latter could be made
under the relevant conditions, but, somewhat surprisingly, the
agreement in the quasi-equilibrium range has been found by
I. Proudman (1951) to be reasonably good, and a brief description
of the calculation of the spectrum will therefore be given here.

The dynamical equation for the spectrum when the turbulence
is isotropic can be written (see (6.6.3) and (6.6.4)) as

% f :E(x", ) de* = S(x, .:)-::u_[lr KB A, (7.5.1)

We are postulating the existence of a quasi-equilibrium for values
of x which are not too small, in which case all the terms in (7.5.1)
are functions of x, ¢, v and ¢ only. As already shown in §7.3, this
implies that E(x, ¢) has any one of the equivalent forms (7.3.4),
(7-3.5) or (7.3.6); we use the form (7.3.5), viz.

E(x,t)=u*AE,, (Jlx, '-%l) .

where A* = 1ovt and uA/v is independent of ¢; the spectrum function
can therefore be written as

E(x, )= ("7')i F(x, %) , (7.5.2)t

+ J. Rotta (1950) and N. R. Sen (1951) have investigated the consequences,
using Heisenberg's form of the transfer term, of assuming different kinds of
similarity (which of necessity cannot embrace values of x in the dissipation
range, except in the case (7.5.2)) during decay, that is, of reducing Elx, 1) to
a single independent variable involving « and ¢ by transformations different from
(7.5.2). A. N. Kolmogoroff (1941 ) proposed one such similarity law (which is
chosen so as to make the range of similarity include both the energy-containing
eddies and the largest eddies for which E{x) = Cx*; the mechanical pasis for such
a similarity is not clear in view of the inability of Fourier components with very
small values of x to interact with other Fourier components), which has been
discussed further by F. N. Frenkiel (19488) and T. von Kédrmidn (19485). All
these similarity transformations invoke energy decay laws different from the
observed law (7.1.1) (that suggested by Kolmogoroff requiring u*c t""'). In
general they are inconsistent with the view, which has been put forward here,
that the similarity of the energy-containing eddies is closely linked with the even
simpler conditions which exist at larger wave-numbers in the equilibrium range.
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where x=x(vt)!. Similarly, the transfer function S(x,t) can be
written as

S(,t) =1, ,,,,(x,”‘l) (7-5-3)

for values of x such that S(x,t) is determined by the motion
associated with the quasi-equilibrium range, so that (7.5.1) becomes

~ 10 - | F) = Su0 - [ 2XR00) d
(7-5-4)

The parameter uA/v is constant during the decay and depends on the
initial conditions (viz. on UM/v for grids of the same geometrical
shape) only, so that (7.5.4) is an ordinary integro-differential
equation in Y which should yield one solution for each value of
ul/v.

Equation (7.5.4) is to be solved subject to the condition

J:D 2x*F(x)dx=1 f : 2£E(x) dx

ettt uA\?
- =Q'15 (_) - R! (7‘5‘5)

Y v

where R is constant during decay and has been found, for turbulence

generated by square-mesh grids, to have the value gﬁ%M
Equation (7.5.4) can be regarded as formally valid for all values of
X, on the understanding that the solution at small values of y
(i.e. of x) describes the hypothetical spectrum which would be
required by the existence of a quasi-equilibrium covering all the
energy of the turbulence. Then letting y—o0 in (7.5.4) we find the

integral condition

f : F(x)dx= J : 2x*F(x)dx=R, (7-5.6)

which is a consequence of the similarity transformation (7.5.2).

Near y=o0 the solution is
F(x)e x, (7:5.7)

as found earlier for an arbitrary form of the transfer term.
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'The additional hypothesis made by Heisenberg is that S (x) has

thﬂ fﬂm ® i
S.-(x}-?L Jﬂx’é’dx'_’.:zx"ﬂx')dx" (7-5.8)

as originally proposed by v. Weizsiicker for the equilibrium range;
the arguments for and against the expression (7.5.8) were described
in §6.6 and apply equally well to its use in the quasi-equilibrium
range. The equation to be solved is then

~ P00~ [Py ax = J oK [ axFoyax

- j . 2X"*F(x"dx".  (7.59)

If the terms on the left side of (7.5.9) are neglected, giving the
equation applicable to the equilibrium range, the solution has the
form (6.6.15); this solution is asymptotic to a power law (F(x)~ x~7)
as y-»c0, so that for Heisenberg's transfer term it is certainly true
that at sufficiently large values of x the terms on the right side of
(7.5.9) dominate those on the left—in other words, that the quasi-
equilibrium reduces to an equilibrium—for an arbitrary value of
the Reynolds number. Hence provided that there is in fact only one
solution of (7.5.9) for each value of the Reynolds number R, such
that F(o)=o0, all the solutions of (7.5.9) are linear in x near y =0
and vary as ¥~ as y - o0, while for solutions for very large values of
R there will be a range of (large) values of x for which F(x)oc x-1.

An analytical solution of (7.5.9) has not been given, but S. Chan-
drasekhar (1951) has obtained the solution numericallyt for several

values of R. By using y and g(y) as independent and dependent
variables respectively, where

y-r‘ﬁ x*F(x)dx", g=7"X*F(x), (7.5.10)

it is possible to convert (7.5.9) into the differential equation
gl +2y(4+8) + 2844 ~g) - 8g =o, (7:5.11)

+ ]. Rotta (1949) claims to have obtained a numerical solution for the case of
infinite Reynolds number and he has published a curve showing the consequent
form of the one-dimensional spectrum function ¢(x), although no details of the
calculation are given, This work was independent of Heisenberg's paper (19485).
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where dashes denote differentiation with respect to y. The boundary
conditions for this equation are obtained from (7.5.6) and (7.5.7)

) g=0 when y=}y'R,
>4y as y->o.

Near y =0 the second approximation is found from (7.5.11) to be

g(y)=4y+yl(a+4logy), (7.5.13)

where a is arbitrary, and the numerical solution is obtained by
a forward integration from this point. The solution is determined
completely when a value of a is chosen, and the corresponding
value of y*R is found from the first of the boundary conditions
(7.5-12).

Three of the solutionst obtained by Chandrasekhar] (19494),
and one obtained by Proudman (1951) (for y*R=21-9), by the
same method are shown in fig. 7.10 in the form of y2x-1F(y) as
a function of aly for several values of y*R. a is the constant of
integration which arises in the determination of F(y) in terms of
g and y by means of the relations (7.5.10), and has been chosen in
such a way that the solutions have length scales which do not vary
greatly with R. A convenient way of doing this is to choose x so
that all the curves in fig. 7.10 have the same slope (viz. 4) at the
origin (which implies that the area under each curve in the figure
is ¥?R/a); these curves thus differ from the solutions of (7.5.9) by
a linear transformation. One of the solutions obtained by Chandra-
sekhar is for the limiting case ¥*R -+ o0 and, as shown in the figure,
it is asymptotic, as x -» 00, to the equilibrium spectrum

8

i
ﬂx}*-(g;; x4 (7.5.14)

(7.5-12)

e ratF)~ (2F) (x var,

+ The solution is not absolutely complete until a value of y is given, but since
¥ occurs essentially in the combination ¥'R and so determines only the Reynolds
number of any one of the solutions in fig. 7.10, it is sufficient for most purposes
to know that ¥ will be of order unity.

{ Note that Chandrasekhar's Reynolds number R is not the same as that used
here. The method of making use of solutions of (7.5.11) which is described
herein was devised by Proudman.



166 THEORY OF HOMOGENEOUS TURBULENCE

where the value of @ appropriate to y*R =co was found by evaluatior
of the area under the curve representing the solution for this case

The comparison between these computed solutions and the
measured statistical functions has been undertaken by Proudmar
(1951). It is clear from fig. 7.10 that, as noticed by Stewart from
measurements (see §7.3), the part of the spectrum containing most

| Fo) =Hairix

(1) Y'R=43 (Chandrasekhar’
(1) ¥ "R=219 (Proudman)

(W) ¥ "R=1379 (Chandrasekha
(iv) Y 'R=9s(Chandrasekhar)

ax
Fig. 7.10. Heisenberg's spectrum function at various Reynolds numbens
(after Chandrasekhar, 19494a; and Proudman, 1951).
of the energy attains the shape appropriate to R=o00 at a value of
the Reynolds number which is well within the scope of wind-tunnel

experiments; for instance, the solutions at ¥*R =00 and y*R =379
(mrrcsponding to y* U-?ﬂ—’- 3 5:&) are almost identical over the

energy-containing range of wave-numbers. Consequently, the
theoretical solution for ¥*R =co may be compared with measure-
ments at any sufficiently high Reynolds number. The two Reynolds
numbers chosen for the comparison were YR =o0 and y*R=21-g,
and Proudman calculated the velocity correlation functions—which
can be measured more accurately, in the energy-containing range,
than the spectrum—from the two appropriate curves in fig. 7.10.
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The data for the comparison were taken from results for square-
mesh grids published by Townsend and by Stewart. The compari-
son between theory and experiment is complicated, chiefly owing
to the presence of the unknown constant y in the theoretical
solution, and it is not possible to reproduce the details here.
Proudman's conclusion is that the theory predicts satisfactorily the
general shape of the correlation functions (excluding large values of
r, which lie outside the quasi-equilibrium range) at the two
Reynolds numbers, provided y is chosen as 045 ¥ 0-05. As an
example of the agreement obtained, fig. 7.11 shows the comparison
between the calculated longitudinal correlation function f{r), for

i

e Heitenberg’s correlation
function (Y =040, 7 R=384)

% Messured correlation function,
R=240 (Stewart, 1951)

7"” .-—-x—- X

§
0 o1 5& gi ﬁ d; é g, é o 19 K]
riM

Fig. 7.11. Comparison between theoretical and measured
correlation functions (after Proudman, 1951).
¥R =184 and y=040 (obtained from the theoretical curves at
other values of ¥*R by the process of adjustment described at the
end of §7.2), and some measurements of this function made at
R =1240.

Although the agreement with experiment is very promising, it
cannot yet be regarded as sufficiently decisive to permit the
inference that Heisenberg’s expression for the transfer is essentially
accurate. The general shape of correlation functions is notoriously
insensitive to theoretical assumptions, and the agreement has been
assisted to some extent by the fact that v is a disposable constant.
What we can say with confidence is that the measurements of the
correlation functions in the energy-containing range are not
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inconsistent with v. Weizsicker's and Heisenberg's hypothesis
about the energy transfer, provided ¥y =045 ¥ 0-05. At very large
values of x, beyond the dissipation range of wave-numbers, there
is, as we noted in §6.6, disagreement between the measured
spectrum and the asymptotic form of Heisenberg's spectrum func-
tion. There are other indications of this lack of validity at large wave-
numbers. The form of the vorticity equation (5.5.8) appropriate to
large Re}rnoldn numbers at which a universal equilibrium exists is

) K w fy
[Tgfj_]' —fob " u(=fo

ox,

- "3{30)*"[!,: K E(x) dx

i (7:5.15)

x*E(x) dx]

from (3.4.25) and, as T'. D. Lee (1950) has pointed out, the left side
of (7.5.15) is measurable, while the right side can be evaluated from
Heisenberg’s form of the spectrum in the equilibrium range (see
(6.6.15)). The result of the calculation is —1-52y, while the
measurements (already described in fig. 6.3) suggest that the value

B:{';) / [ 2::) ] at very large Reynolds number is about —o0-3,
giving y=o0-2, This determination of ¥ is based on quantities
associated with wave-numbers at least as large as those responsible
for the dissipation, so that Ileisenberg’s hypothesis leads to
predictions about the cnergy-containing and dissipation ranges of
wave-numbers which can be valid only if substantially different
values of ¥ for the two ranges are used. Such a possibility is not
worth admitting (since it would undermine the physical basis of
the hypothesis about the energy transfer), and we must conclude
that Heisenberg's spectrum may represent the facts accurately in
the energy-containing range but cannot do so at larger wave-
numbers in the equilibrium range. There may be some significance
in the possibility of agreement with experiment only under condi-
tions such that viscous forces are negligible; the ideas underlying
the hypothesis are concerned entirely with inertial effects, and it
may be that the absence of viscous forces is a necessaiy condition
for their validity.

-



CHAPTER VIII
THE PROBABILITY DISTRIBUTION OF u(x)

8.1. The experimental evidence

In the two preceding chapters the discussion has inevitably
centred around the physically important spectrum tensor. This is
the statistical quantity which lends itself most readily to the
formulation of hypotheses about the mechanism of decay of the
turbulence. However, there are some other statistical quantities
whose meanings are readily understood and which are relevant to
the basic mechanical processes of the motion. Almost all of these
quantities are determined by the probability distribution of the
velocity or its derivatives at one point, or by the joint-probability
distribution of the velocity at two points. The intention in this
chapter is to consider these two probability distributions in the
hope that some light will be thrown on the form of the all-embracing
joint-probability distribution of the velocities at any number of
points. This latter distribution will be referred to simply as the
distribution of the function u(x).

We begin with the probability density function of the velocity at
an arbitrary point and at a given time of decay. A. A. Townsend
(1947) has devised a method of measuring this function directly by
means of a suitable electrical analysis of the output of a hot-wire
anemometer placed at the point in question. A sample of the results
obtained for the velocity component u, in the direction of the stream
for the turbulence generated by a square-mesh grid is shown in
fig. 8.1. These measurements are fitted very closely by the normal
or Gaussian probability density function shown in the figure, and
the same is true of measurements of u,, u, or u, at different times of
decay and at different Reynolds numbers. A sensitive test of the
closeness of the fit over the outer parts of the curve is provided by
measurements of the factor u}/(u¥)®, which measures the relative
flatness of the distribution. Townsend has found that this factor lies
between 2:9 and 3-0, within the limits of experimental error, as
compared with the value 3-0 appropriate to a normal distribution
of u(x). Measurements of the factor 1}/(u})}, which measures the
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relative skewness of the distribution, gave the value zero. The
existence of an approximately normal distribution of the velocity
at one point has been known for many years (for example, see
Simmons and Salter, 1938), and was one of the first experimental
results concerning turbulent motion to be established.

- X Measurements

¥ ‘u,,“ (x/M =16, UM/ D=9600)
;’ ‘\ - == MNormal distribution
’ .
’ IH} ]
r+ ‘ﬂ.
!' ‘\
' \
”1' \“
*'f \‘
P ol m""-_-‘
- v fluctugtion +

Fig. 8.1. Probability density function of u,.
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Fig. 8.2. Flatness factor of the distribution of uj —u,.

The same amount of information about the joint-probability
distribution of the velocities at two different points is not yet
available, but enough measurements have been made to show that
in general it is not accurately normal.t Fig. 8.2 shows measurements

+ For the definition of a normal joint-probability distribution, see, for
example, H. Cramér, op. cit. (p. 98).
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(made by R. W. Stewart) of the factor

(13 = 1) /[(sy — y)"]*, (8.1.1)
for different values of r, where

Uy, Xy, %) and wy=u,(x, 47,2y, xy),
the x,-axis being directed downstream, and at different stages of the

B
deaybehindngﬁdoﬁqmremnh.'l‘hckng:hﬂi(}%+s) , where

x is the distance from the grid, is used as the unit of , because the
measured longitudinal velocity correlation f{r)=u]u,/u, which is
shown for comparison, then has approximately the same shape at
all the relevant stages of the decay. If the joint-probability distribu-
tion of u, and u] were accurately normal, the flatness factor of
u; ~u, would be 3-0. The measured flatness factors have approxi-
mately this value for » greater than about o-osM (}Ii;f'" 5)*. at which
value of r the correlation coefficient f{r) is about 0-6. At values of »
which are so large that u, and u; are statistically independent, the
flatness factor (8.1.1) reducesto 1-5+£~-—3-, and the measurements
in this range merely recover the result noted in the previous
paragraph. Atsmall values of  the measured flatness factor departs
significantly from 3-0 and has a maximum value of about 3-6 at
=0,

Results which are qualitatively similar have been found for the
skewness factor of the probability distribution of u; —u,, i.e. for

(CEN (G (8.1.2)

R. W. Stewart (1951) has published measurements of this quantity
for different values of r and for different values of the Reynolds
number UM|/v of the grid, which are shown in fig. 8.3. The values
of the skewness depend significantly on Reynolds number, but for
each Reynolds number the trend is from an extreme value at r =0
to the value appropriate to a normal distribution (viz. zero) at large
values of r. Although the skewness falls steeply at small values of »
it does not reach the value appropriate to a normal distribution at
values of r at which f{r) is still welfabove zero (unlike the flatness
factors shown in fig. 8.2).
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When r is sufficiently small, the probability distribution of
(u3 —wu,) is identical with that of ou,/éx,. (The points at r=0 in
figs. 8.2 and 8.3 were in fact obtained from an (electrical) differen-
tiation of the velocity recorded at a point fixed relative to the grid.
The agreement with the remainder of the curve provides further
support for the fundamental assumption that the velocity is a con-
tinuous function of position and for the approximation that the
velocity variations at the point fixed relative to the grid are the same

UM

= 53300
o4 b . 2200 M-
1\ 7 -ﬂ_“

015 o50 ors
riM

Fig. 8.3. Skewness factor of the distribution of u; —u; (from Stewart, 1951).

as if the turbulence were simply being carried along by the stream.)
Some further results about the probability distribution of velocity
derivatives are available. We have already quoted (see fig. 6.3) the

i
measurements of (—a-"' / (—-:) at different Reynolds numbers,
%, ‘ ox \

which suggest that the limiting value for very large Reynolds
numbers is about —0+3. Fig. 8.4 shows a sample complete distribu-
tion of du,/0x, for turbulence generated by a square-mesh grid,
obtained by A. A. Townsend by an electrical analysis of the
differentiated signal from the hot-wire anemometer, The departures
from a normal curve with the same standard deviation are con-
sistent with the measurements of the skewness and flatness factors
mentioned above. Small positive values of du,/0x, are more probable
than small negative values, but this positive contribution to the
skewness is more than balanced by the higher frequency of occur-
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rence of negative, as compared with positive, large values of du,/dx;.

Townsend has also measured G?j‘ / [@T (the direction of

the x,-axis being at right angles to the x,-axis but otherwise
arbitrary), and finds its value to be about 3-3, with no marked
variation with time of decay or Reynolds number.

A further set of experimental results concerning the probability
distribution of u and its derivatives at one point is provided by some

measurements of (%T)‘ /[@T (8.1.3)

o Menurements
(x/M=25, UM/ =34 x10%

o on Mormal distribution with
the same standard deviation

i 1
- Fluctuation in & u/dx, .
Fig. 8.4. Probability density function of &w,/ox,.

at different Reynolds numbers for values of n up to 3 (Batchelor and
Townsend, 1949), which are reproduced in fig. 8.5. Measurements
were made in the turbulence generated by a square-mesh grid at
four different Reynolds numbers, and on the central plane of the
turbulent wake behind a cylinder at two different Reynolds numbers.
The variation of the results over all six cases is small enough to
encourage the belief (based on the universal equilibrium theory)
that the limiting values for very large Reynolds number are
independent of the large-scale properties of the turbulence. The
interesting aspect of the results is the rapid increase of the flatness
factor (8.1.3) with n. The probability distributions of d%«,/2x} and
0%u,/2x} must be very different from a normal distribution to have
flatness factors in the neighbourhood of § and 6 respectively. The
interpretation of these remarkable observations will be considered

in §8.4.
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8.2. The hypothesis of a normal distribution of the velocity
field associated with the energy-containing eddies
Since the velocity at any point is subject to the influence of a large
number of random eddies or flow patterns in its neighbourhood, we
might expect, from a rough use of the Central Limit Theorem, that
this velocity has an approximately normal probability distribution.
The energy-containing eddies have their origin in some mechanical

UMM \ 4
s 2810

: “533 Isotropic turbulencs a

® 22500
r a u::; Cylinder
(:"‘ v mu]wm

L A J
: 1 3
Fig. 8.5. Flatneds factor of velocity derivatives (from Batchelor
and Townsend, 1949).

stirring action, such as the passage of air through an array of rods,
and it would indeed be a little surprising if these eddies did not give
rise to a velocity (at one point) distributed approximately according
to an error law. The same argument would not serve to show that
the joint distribution of the velocities at two points is normal, since
the relation between the velocities at the two points must conform
to the equations of motion and of continuity, and these are unlikely
to permit a distribution of the pure chance type. The inertia terms
of the equation of motion in particular will exercise astrong influence
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on the relation between the two velocities and will lead to such
effects as a difference between the probability distribution of
positive relative velocities (extension of the fluid between the two
points) and the distribution of negative relative velocities (contrac-
tion between the two points).

When the two points are close together, the relation between the
velocities at the two points is very strong, and the difference between
the velocities will have a probability distribution which is governed
to a large extent by the Navier-Stokes equation. As we saw earlier,
the difference between the velocities at two neighbouring points is
determined by the Fourier coefficients corresponding to the small
eddies, Eddies smaller than a certain size owe their existence
entirely to the non-linear transfer down the spectrum, and the
smaller the eddy the more prolonged, so to speak, has been the
influence of the non-linear terms. We may expect the statistical
characteristics of the small eddies to reflect this influence, and
the distribution of the velocity difference (u’—u) will probably
depart furthest from a normal distribution at very small values
of r.

These general expectations are consistent with the measurements
described in the previous section. The distribution of the velocity
at one point was found to be fairly accurately normal. The distribu-
tion of u; — u, was found to be accurately normal if r is large enough,
but is significantly different from a normal distribution at small
values of r/l, the maximum difference occurring at r=o0, Asr is
decreased, the skewness factor of the distribution of u; — u; becomes
different from zero considerably faster than the flatness factor
becomes different from 3-0. This is also understandable in view of
the interpretation of the triple correlation (of which (Jw,/x,)® is
a special form) as a measure of the inertial transfer of energy, which
is significant for both large and small eddies.

Assuming that the behaviour of the above third- and fourth-order
product mean values is typical of the behaviour of higher order
products, we are led to the working hypothesis that the part of the
probability distribution of the function u(x) that is determined by
the motion associated with the energy-containing eddies is approxi-
mately normal, at any rate so far as the values of the velocity at no
more than two points are concerned. This is an approximation
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which will be better for some purposes than for others ; the measure-
ments suggest it will give reasonably accurate predictions about the
relation between the fourth- and second-order two-point mean
values but less accurate predictions about the triple-velocity
correlation. The potential usefulness of the hypothesis is obviously
very great, since it provides a method of expressing complicated
velocity-product mean values in terms of the fundamental correla-
tion R;,(r), but it must be used with caution in view of the limited
scope of the supporting experimental data. There is no theoretical
basis for the supposition that departures from a normal distribution
first become appreciable at the end of the energy-containing range
of eddy sizes, so that this part of the hypothesis must stand or fall
on its empirical merits.

Another statement of the hypothesis may be made in terms of

the Fourier coefficients dZ(x). It was stated in § 2.5 that the velocity
could be represented in the form

u(x) = e *dZ(x), (8.2.1)

where the values of the random increments dZ(x) for different values
of x are uncorrelated. dZ(x) is a linear functional of the velocity
u(x) (see (2.5.2)), and it followst that if the function u(x) is normally
distributed, so too is the function dZ(x). But if the values of dZ(x)
at any two values of x are normally distributed and uncorrelated,
they must also be statistically independent. Hence a normal
distribution of the function u(x) requires the values of dZ{x) for
different values of % to be independent.

It is also of interest to inquire if the converse can be established
by applying the Central Limit Theorem to the (effective) sum on the
right side of (8.2.1). Normality of the distribution of u(x) does not
follow immediately from independence of the Fourier coefficients;
for instance, if the set dZ(x) consisted of a set of independent jumps
at the random points %, %, ... which varied from one realization to
another (these conditions being theoretically compatible with a
continuous spectrum), the Central Limit Theorem would not be
applicable. However, we can invoke further conditions which rule

+ H. Cramér, Mathematical methods of statistics, Princeton University Press,
1946, chap. 24.
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out such rather special cases. Provided the velocity field is such
that the ergodic property holds, the requirement of a continuous
spectrum means that the spectrum obtained from (almost) every
realization (by a space average) must be continuous, which excludes
the above case. Roughly speaking, the ergodic property demands
that for (almost) every realization of the velocity field there must be
an indefinitely large number of Fourier components in any interval
dx, and this will now ensure, by the Central Limit Theorem, that the

sum of a large numberof termslike | e'*-*dZ(x)is normally distri-

buted when the values of dZ(x) for :;iﬁcrtnt x are independent.t
The hypothesis of a normal distribution of the energy-containing
eddies is thus equivalent to the hypothesis of independence of the
Fourier coefficients dZ(x) over the appropriate range of wave-
numbers. Put in the latter form, the hypothesis can be made more
precise; we can suppose that the dZ(x) are independent for x <o,
where o is to be determined empirically and is expected (from the

existing data) to be such that I'E(x)dx is an appreciable fraction
0

of the total energy.

Use of the above hypothesis was first made by M. Million-
shtchikov (19414, b), who assumed that fourth-order and second-
order two-point product mean values were related in the same way
as for a normal distributien of u(x), for a particular purpose which
will not be described here. W. Heisenberg (1948a) assumed inde-
pendence of the coefficients dZ(x) in order to get an estimate of the
covariance of the pressure fluctuations at two points, and a similar
use of the hypothesis was made later by A. M. Obukhoff (1949a) and
G. K. Batchelor (1951). (This particular application of the hypo-
thesis will be described in the next section.) A related use of the
hypothesis is being made in some of the current work on density
fluctuations in a fluid in turbulent motion.

8.3. Determination of the pressure covariance

In quite a number of physical problems in which turbulent
motion occurs, the fluctuating pressure is the quantity of most
importance. An obvious example is the determination of the sound

+ I am grateful to Professor M. S. Bartlett for his help with the preparation
of these two paragraphs.
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field generated by the turbulent motion when the fluid is com-
pressible. We shall not consider these problems here, but will show
how some of the statistical characteristics of the pressure field in
isotropic turbulence can be determined with the aid of the hypothesis
of the preceding section,

The divergence of the Navier-Stokes equation yields the follow-
ing equation for the pressure distribution:

;v’P(x)= _Buy

ox,0x;"

(8.3.1)

From this and a similar equation at x’ (where the pressure and
velocity are p’ and u’) we find

1 ,_ PPuguy Pupny, s,
AL L) B ma e oy e 3. 2%, x 2x, ox) 0

which gives the equation for the pressure covariance as

1 vpp = Otuuguyiy,

Y PP =%y o, dnyor,’ (8.3-2)

where r=x’ —x, and V2 now has the meaning ¢/, 0r;. When the
turbulence is isotropic the quantities on both sides of (8.3.2) are
functions of r? alone, and we can write

R

L c‘“_;.i"fuﬂl
pgpp —P(f), ar ar ar a W(f), (83‘3)

in which case (8.3.2) becomes

We)=(5a+25) PO)

(B D ey

Provided we can assume that P(r) and W(r) approach zero with
sufficient rapidity as r— o0, the explicit expression for the pressure
covariance in terms of the fourth-order velocity-product mean value

is 1 [®
Pr)=g | s W) . 839
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A corresponding equation for the pressure ‘spectrum’ function
defined by

(k)= B-I;J.P(r)c‘"‘ tdr=— J'm P(r)«rsinkrdr

2mx? J o
(8.3.6)
can also be obtained. Itis not possible to define a Fourier transform
of u;u,uju, since it tends to the non-zero value u,u; . w1, as r -,
but we can define a tensor € ,,.(x) by the relation

TR TR PR T =J‘Qm,,,(x)e" Tk, (8.3.7)

whence we have, from (8.3.3),
W(r) = | KKk iKK,0 E jm(3) €% T de. (8.3.8)

We then find, from (8.3.4) and the relation inverse to (8.3.6), that
the pressure spectrum is given by

[1(K) = k4K kKK L2 () - (8.3.9)
This is the stage at which it is necessary to introduce some
approximation or hypothesis, since we have little theoretical or
experimental information about the fourth-order two-point
velocity-product mean value. The hypothesis described in the
preceding section fills the need very well, since it supplies a simple
relation between fourth-order product mean values and second-
order product mean values, the latter of which can be regarded as
‘known’ in view of the intensive investigation to which they have
been subjected. When the joint-probability distribution of u and v’
is normal, the probability density function (QX(u,u’) and the
moment-generating function M(a. B)+are given by

M(a, B)=”Q(u. u’)e® 2 +B-v Judua’

 exp Wi 0 + 2t @y P+ Ui Byl (8.3.10)
from which it follows that

1 Ul 4 1 Uty 4+ U Uy U U + Uy g 50y (8.3.11)
The use of this relation will now permit us to determine P(r) in
terms of R;;(r) and thence in terms of the basic scalar function



180 THEORY OF HOMOGENEOUS TURBULENCE

u*f(r), but we must keep in mind that the approximation (8.3.10) is
known to be accurate only for quantities determined by the energy-
containing eddies,

Substituting (8.3.11) in (8.3.3) and making use of the equation of
continuity in the form (2.4.6), we find

0*Ry(r) 'R, (r)
W(") =2 ar’ ar B‘r:.f:;r, (8.3.1 1)

When the turbulence is isotropic (as it is in the case in which
measurements have led to the hypothesis of a normal distribution)
R, ((r) ce ' be expressed in terms of the single scalar function u?f{r)
by means of the relations (3.4.5) and (3.4.6), whence after some
elementary algebra the expression for W(r) becomes

W)= (3 42 P+ 2014507, Baas)

where dashes denote differentiation with respect to r. The expres-
sion (8.3.5) for the pressure covariance then reduces to

Po)=é[ " (y-Z) . (8.3.14)
In particular, the mean-square pressure fluctuation is
P =PO) =2 523y, (8.3.15)

and the mean square pressure gradient is
E,Mj!- —3P) = :wL ;f*dy. (8.3.16)

Corresponding to (8.3.14) thereis a relation between the spectrum
functions I1(x) and E{x) which is found (see Batchelor, 1951) to be
sin*d

H(x)r: E(x") E(| % —» |)[—:Pdﬁ' (8.3.17)

where @ is the angle between x and x’. It is clear from the form of
the integrand that the value of [1(x) at x =k, say, is determined by
the form of the function E(x) for values of x which are of the same
order of magnitude as x,. Consequently, if we can infer from the
experimental results described in §8.1 that the hypothesis of

independence of the increments dZ(x) is accurate for x < o, (8.3.17)
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is a valid approximate formula for Il(x) provided « <o (although
the accuracy may not be very high for values of x near o in view of
the contributions to the integral (8.3.17) from eddies not included
in the hypothesis). The mean-square pressure fluctuation follows
from (8.3.17) as

E:;=J.l'l(x)dx
nl

LS s" " »
Bn‘ IE(:)E(: )I I‘dx dx”, (8.3.18)

where x"=x"—x, and ¢ is the angle between x" and x". The
integrations over the directions of the vectors x" and x” can be
carried out, giving

S mamr s e
where

I(:)BIG) =§(r’+r‘)-—i-—}(:+r1)(s'—r1)’lng]:—::—r

The weighting factor I(s) is such that when s is of order unity, I(s)
is of order unity, and when s» 1, I(s)~{§s~2 Consequently p¥/p?
is determined, according to (8.3.19), principally by the range of
wave-numbers near the position of the maximum of E{(x); if the
Fourier coefficients determining the energy-containing range of
the spectrum are statistically independent, (8.3.19) is a valid
approximate formula and p?/p* will be determined by the form of
E(x) in that range. It is a corollary that the order of magnitude of

P2/p? is that of [j: E(x) dn']’, that is, of }(u?)?.

Likewise the expression for the mean-square pressure gradient
in terms of the energy spectrum function (Heisenberg, 1948a) is

I
2P~ () e

sint ¢ dic’ dic”

iaffmomey 2ty
‘JAn J-n E(x")E(x")x'c"] (;;) de’ds”,  (8.3.20)
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where

JO=J () = =¥+ + o+ )+ dalo—slog 0

T'he above remarks about the behaviour of I(s) apply also to J(s), so
that if the Fourier coefficients for wave-numbers near the position
of the maximum of xE(x) are statistically independent of each other,

(8.3.20) is a valid approximate formula and EI,(?p)‘ will be deter-

mined by the form of E(x) in that range. This is a condition which
has not yet been shown experimentally to be satisfied, and the
evidence described in §8.1 suggests that at best it will be a fair
approximation only. We should therefore treat the deductions

about ’%W (and about —I-(F—Et?) for small values of :r) with

P
more reserve than those about —I-iﬁi
p

If information about the function #*f(r) or E(x) is available, we
can use the above formulae to calculate the pressure covariance or
the spectrum function II(x). It has been remarked (in §7.2) that
when the Reynolds number of the turbulence is only moderately
large (moderate from an experimental point of view) the functions
u*f(r) and E(x) have reached their asymptotic shapes (i.e. the shapes
for infinite Reynolds number) over the ranges of r and « associated
with the energy-containing eddies. This asymptotic shape is there-
fore an important member of the family of velocity correlation
functions, and the appropriate calculations of P(r) from the relation
(8.3.14) have been made (Batchelor, 1951) with the result shown in
fig. 8.6. The calculation also showed that

P =0 34p00 =0 15(} o), (8.3.21)

The mean-square pressure gradient, on the other hand, depends
significantly on the form of E(x) outside the energy-containing
range, which is not known accurately at these moderate Reynolds
numbers. However, provided the Reynolds number is so large that

an inertial subrange of the spectrum exists, the value of;:-,-.f"'ﬁi‘

depends chiefly on the extent of this range, and one finds the
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following approximate formula:

;%(W=226'%'. (8.3.22)

In this latter case of very large Reynolds number, the value of

;—t(p_‘ — pp’) for small values of 7 is determined by the inertial sub-

range and the appropriate form of (8.3.14) is the very simple formula

5‘,( P —-p)P= {{ul(.tl +7, Xg, Xg) — ty(%,, %3, xﬂ)}'l}:’ (8.3.23)

0 1 i i i i i 1 I -

Fig. 8.6. Pressure and velocity correlations at large Reynolds number
(after Batchelor, 1951).

as has been remarked by A, M. Obukhoff (1949a). In view of the
results obtained in § 6.5 we see that (p” —p)* varies as r# for r</ at
very large Reynolds numbers, and the corresponding variation of
the spectrum function I1(x) is readily found to be Il(k)oc k¥ for
x» 1/l

8.4. The small-scale properties of the motion

Our understanding of the general character of the small-scale
features of turbulent motion is very far from complete, but the
problems concerned are so interesting that a few tentative remarks
will be made here. Very few theoretical or experimental results have
been established so that for the most part we must proceed by
analogy and plausible inference. A very striking observation con-
cerning the small-scale properties of the motion has already been
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described in §8.1, and we can take this as a starting point for the
discussion. The measurements described in fig. 8.5 show that the
flatness factor of the probability distribution of the various velocity
derivatives increases quite steeply with the order of the derivative,
and the flatness factors of the distributions of u,, ou,/dx,, 0*,/0x}
and 3*w,/dx} were found to be in the neighbourhood of 3, 4, 5 and
6 respectively. Since the representation of 9™u,/dx} in terms of
Fourier components is

éﬁ. - ‘IIEII 3 xr dZ,(u),
the measurements show, in effect, that the contribution to u(x)
from a given range of wave-numbers has a probability distribution
which becomes more markedly different from a normal distribution
as that range of wave-numbers moves towards infinity. Equiva-
lently, the Fourier coefficients dZ(x) for values of x in the
neighbourhood of x,, say, become more closely related to each other
statistically (in such a way as to give a large flatness factor to the
distribution of the corresponding velocity derivative) as x, increases.
A large flatness factor of a distribution implies that the probability
density function has a higher central peak and broader skirts than
a Gaussian function of the same standard deviation, and that very
small and very large values of the random variable are both more
probable than for a normal distribution of the same deviation. An
extreme version of such a distribution is obtained if the central
peak becomes of infinite height but encloses a finite area 1 -7,
corresponding to a random variable which takes the value zero for
a fraction 1 — ¥ of the total number of realizations and is distributed
in some given way for the remainder of the realizations. If we make
the simple assumption that ™u,/0x] is distributed in this extreme
way, with a normal distribution of the non-zero values, we have

() 1G] - 64

so that the measured flatness factors for n =0, 1, 2, 3 (average values
of which are 30, 3-9, 4-9, 5'9 respectively), correspond to y =10,
©'77, 061, o'51 respectively. These values of y are effective
‘intermittency’ factors in the sepse that they describe the fraction of
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the total number of realizations for which the derivatives (at a given
point and time) fluctuate and take non-zero values; or, assuming the
equivalence of probability and space averages, they describe the
fraction of the total space of one realized velocity field for which the
derivatives are non-zero, if the distributions have the above
hypothetical form.,

Direct observation of the variation of u,, fu,/dx,, ¢*u,/0x} and
0%,/ 02} with x,, as shown on the screen of an oscillograph, suggests
that the above possible interpretation of the high measured flatness
factors is at least a qualitative approximation to the truth (Batchelor
and Townsend, 1949). These visual observations of the traces of
0%, /0x} and ®u,/0x] revealed a fairly definite alternation between
periods of quiescence, during which the magnitude of the derivative
is small, and periods of activity during which the derivative fluctu-
ates in an apparently random fashion. (Visual observations of the
trace do not, of course, provide information about whether the
derivative is normally distributed during periods of activity.) The
periods or regions of activity were large enough to contain a con-
siderable number of oscillations of the derivative. These properties
of the higher derivatives were observed both for turbulence
generated by a grid and for the turbulence in the wake of a long
cylinder, and are evidently intrinsic to the micro-structure of
turbulence in general—as, indeed, we should expect at high
Reynolds numbers.

The inference, then, is that there is an uneven distribution, in
space, of the energy associated with the large wave-number
components of the turbulence, and that the higher the wave-
number, the more does the associated energy tend to occur in
confined regions of space (meaning that if a Fourier resolution of
the velocity field within a region of activity were made, the amplitude
of the component at the relevant wave-number would be found to
be large, while a Fourier resolution of the velocity field within
a region of quiescence would give a very small amplitude; the
amplitude of the component for the field as a whole will lie some-
where between these two amplitudes). There are other hydro-
dynamical situations in which a similar tendency appears. Itis well
known that certain steady motions are unstable to small disturb-
ances and tend to a state in which the vorticity is concentrated in
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isolated regions. Direct observations and calculationst both show
that a plane vortex sheet, i.e. a layer across which the velocity is
discontinuous, is unstable to small two-dimensional disturbances
and tends to break up into a row of closely wound spirals. These
spirals are activated regions for the vorticity in the sense of the
interpretation of the observations of turbulence. It is a plausible
speculation that flows such that higher order derivatives (V x (V x u),
etc.) are uniform over a plane and zero elsewhere are similarly
unstable, and give rise to a number of regions of concentration of
the derivatives.

A related property of hydrodynamical systems at large Reynolds
number is the tendency for regions of rapid change of the velocity
to form. This important tendency was mentioned in Chapter vI as
an illustration of the way in which energy is transferred from small
to large wave-number harmonic components. What is relevant to
the present context is the tendency for a small number of strong
discontinuities—rather than small discontinuities distributed uni-
formly throughout the fluid—to form, giving another expression of
the tendency for the energy associated with Fourier components
of large wave-number to have an uneven spatial distribution.
J. M. Burgers (19485, 19504, b) has found that for a hypothetical
model system which satisfies a simplified equation of motion, the
appearance of a few strong discontinuities (or near-discontinuities,
owing to the smoothing effect of viscosity) can be explained as the
result of a gradual overtaking and coalescence of the many small
discontinuities which are first formed, and it seems very probable
that a similar process occurs in the real system.

On the whole, the apparent spottiness of the spatial distribution
of the energy of high wave-number components is qualitatively in
agreement with our general ideas (which admittedly are still very
crude) about the effect of the non-linear inertia forces. A case which
offers us a better chance of examining the above effects is that of
turbulent motion in two dimensions. Motion in two dimensions has
the simple property that the vorticity of a fluid element is unchanged,
except by molecular diffusion, as the element follows the motion
(and precisely because of this special characteristic of two-

t+ L. Rosenhead, ‘ The formation of vortices from a surface of discontinuity’,
Proc. Roy. Soc. A, 134, 1932, 170.
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dimensional motion we should beware of assuming too close a
relation between two- and three-dimensional turbulence). Hence
for a motion with zero viscosity, the integrals

J: E(x)dx, J : K*E(x) dx

are constant; even when » is finite but small the integrals will be
constant until such time as energy has been transferred to high
wave-numbers at which viscous forces are significant. The effect of
the non-linear term of the equation will be to transfer energy over
an increasingly wide range of wave-numbers, and if we imagine
the initial state to be such that all the energy lies in the range
o < x < k', one of the effects of the non-linear term will be to transfer
energy to wave-numbers x > x”. But if there is a transfer of energy

across x=x', the constancy of J‘“x'E{x)dx demands that there
0
should be an even greater flow of energy in the opposite direction
within the range o<x<«'.The first momcntj “xE (x)dx thus becomes
L]

smaller and smaller, while the wave-number which divides the
region in which energy is flowing to high wave-numbers from that
in which there is a flow in the reverse direction, continually increases.
This net tendency for the bulk of the energy to concentrate in the
small wave-numbers means that fluid elements with similarly
signed vorticity must tend to group together; in no other way is it
possible for the scale of the velocity distribution to increase. We
expect, therefore, that from the original motion there will gradually
emerge a few strong isolated vortices and that vortices of the same
sign will continue to tend to group together. The differences between
this motion and three-dimensional turbulence are very great, but
the above argument suggests they have in common the property that
the fluctuations in the velocity derivatives tend to occur in confined
regions of space.

L. Onsager (1949) has arrived at a similar conclusion about the
tendency for a small number of strong isolated vortices to form in
a two-dimensional motion consisting of a random distribution of
line vortices, from an argument based on the methods of statistical
mechanics.
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